Infinite families of arithmetic identities and congruences for bipartitions with 3-cores

被引:8
|
作者
Baruah, Nayandeep Deka [1 ]
Nath, Kallol [2 ]
机构
[1] Tezpur Univ, Dept Math Sci, Sonitpur 784028, Assam, India
[2] Sibsagar Coll, Dept Math, Sivasagar 785665, Assam, India
关键词
Partitions; t-cores; Bipartitions; Dissections; Theta functions;
D O I
10.1016/j.jnt.2014.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(3) (n) denote the number of bipartitions of n that are 3-cores. By employing Ramanujan's simple theta function identities, we prove that A(3)(2n + 1) = 1/3 sigma(6n + 5), where sigma(n) denotes the sum of the positive divisors of n. We also find several infinite families of arithmetic identities and congruences for A(3)(n), which include generalizations of some recent results on A(3)(n) by B.L.S. Lin (2014) [6]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 104
页数:13
相关论文
共 50 条
  • [41] Infinite families of strange partition congruences for broken 2-diamonds
    Paule, Peter
    Radu, Silviu
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 409 - 416
  • [42] Elementary proofs of infinite families of congruences for Merca’s cubic partitions
    Robson da Silva
    James A. Sellers
    The Ramanujan Journal, 2023, 62 : 925 - 933
  • [43] Infinite families of strange partition congruences for broken 2-diamonds
    Peter Paule
    Silviu Radu
    The Ramanujan Journal, 2010, 23 : 409 - 416
  • [44] Infinite families of congruences modulo 9 for 9-regular partitions
    Chen, Na
    Li, Xiaorong
    Yao, Olivia X. M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (02): : 163 - 172
  • [45] Prime orthogeodesics, concave cores and families of identities on hyperbolic surfaces
    Basmajian, Ara
    Parlier, Hugo
    Tan, Ser Peow
    ADVANCES IN MATHEMATICS, 2025, 460
  • [46] Newman's identity and infinite families of congruences modulo 7 for broken 3-diamond partitions
    Yao, Olivia X. M.
    Wang, Ya Juan
    RAMANUJAN JOURNAL, 2017, 43 (03): : 619 - 631
  • [47] Newman’s identity and infinite families of congruences modulo 7 for broken 3-diamond partitions
    Olivia X. M. Yao
    Ya Juan Wang
    The Ramanujan Journal, 2017, 43 : 619 - 631
  • [48] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (04): : 1038 - 1054
  • [49] Infinite families of congruences modulo 7 for Ramanujan's general partition function
    Saikia, Nipen
    Chetry, Jubaraj
    ANNALES MATHEMATIQUES DU QUEBEC, 2018, 42 (01): : 127 - 132
  • [50] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    M. S. Mahadeva Naika
    T. Harishkumar
    T. N. Veeranayaka
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 1038 - 1054