Deep Learning-based Type Identification of Volumetric MRI Sequences

被引:2
|
作者
Vieira de Mello, Jean Pablo [1 ]
Paixao, Thiago M. [1 ,2 ]
Berriel, Rodrigo [1 ]
Reyes, Mauricio [3 ]
Badue, Claudine [1 ]
De Souza, Alberto F. [1 ]
Oliveira-Santos, Thiago [1 ]
机构
[1] Univ Fed Espirito Santo UFES, Vitoria, ES, Brazil
[2] Inst Fed Espirito Santo IFES, Vitoria, ES, Brazil
[3] Univ Bern, Artorg Ctr Biomed Engn Res, Bern, Switzerland
关键词
D O I
10.1109/ICPR48806.2021.9413120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The analysis of Magnetic Resonance Imaging (MRI) sequences enables clinical professionals to monitor the progression of a brain tumor. As the interest for automatizing brain volume MRI analysis increases, it becomes convenient to have each sequence well identified. However, the unstandardized naming of MRI sequences makes their identification difficult for automated systems, as well as makes it difficult for researches to generate or use datasets for machine learning research. In the face of that, we propose a system for identifying types of brain MRI sequences based on deep learning. By training a Convolutional Neural Network (CNN) based on 18-layer ResNet architecture, our system can classify a volumetric brain MRI as a FLAIR, T1, T lc or T2 sequence, or whether it does not belong to any of these classes. The network was evaluated on publicly available datasets comprising both, pre-processed (BraTS dataset) and non-pre-processed (TCGA-GBM dataset), image types with diverse acquisition protocols, requiring only a few slices of the volume for training. Our system can classify among sequence types with an accuracy of 96.81%.
引用
收藏
页码:5674 / 5681
页数:8
相关论文
共 50 条
  • [41] Deep learning-based identification of eyes at risk for glaucoma surgery
    Ruolin Wang
    Chris Bradley
    Patrick Herbert
    Kaihua Hou
    Pradeep Ramulu
    Katharina Breininger
    Mathias Unberath
    Jithin Yohannan
    Scientific Reports, 14
  • [42] DeePCCI: Deep Learning-based Passive Congestion Control Identification
    Sander, Constantin
    Rueth, Jan
    Hohlfeld, Oliver
    Wehrle, Klaus
    NETAI'19: PROCEEDINGS OF THE 2019 ACM SIGCOMM WORKSHOP ON NETWORK MEETS AI & ML, 2019, : 37 - 43
  • [43] PatchRNN: A Deep Learning-Based System for Security Patch Identification
    Wang, Xinda
    Wang, Shu
    Feng, Pengbin
    Sun, Kun
    Jajodia, Sushil
    Benchaaboun, Sanae
    Geck, Frank
    2021 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2021), 2021,
  • [44] Deep Learning-Based Signal Modulation Identification in OFDM Systems
    Hong, Sheng
    Zhang, Yibin
    Wang, Yu
    Gu, Hao
    Gui, Guan
    Sari, Hikmet
    IEEE ACCESS, 2019, 7 : 114631 - 114638
  • [45] Accelerated Synthetic MRI with Deep Learning-Based Reconstruction for Pediatric Neuroimaging
    Kim, E.
    Cho, H. -H.
    Cho, S. H.
    Park, B.
    Hong, J.
    Shin, K. M.
    Hwang, M. J.
    You, S. K.
    Lee, S. M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2022, 43 (11) : 1653 - 1659
  • [46] Deep Learning-Based Meniscus Tear Detection From Accelerated MRI
    Harman, Fatma
    Selver, Mustafa Alper
    Baris, Mustafa Mahmut
    Canturk, Ali
    Oksuz, Ilkay
    IEEE ACCESS, 2023, 11 : 144349 - 144363
  • [47] MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction
    Saratxaga, Cristina L.
    Moya, Iratxe
    Picon, Artzai
    Acosta, Marina
    Moreno-Fernandez-de-Leceta, Aitor
    Garrote, Estibaliz
    Bereciartua-Perez, Arantza
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [48] Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging
    Yoo, Roh-Eul
    Choi, Seung Hong
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2024, : 341 - 351
  • [49] Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI
    Wi-Sun Ryu
    Dawid Schellingerhout
    Jonghyeok Park
    Jinyong Chung
    Sang-Wuk Jeong
    Dong-Seok Gwak
    Beom Joon Kim
    Joon-Tae Kim
    Keun-Sik Hong
    Kyung Bok Lee
    Tai Hwan Park
    Sang-Soon Park
    Jong-Moo Park
    Kyusik Kang
    Yong-Jin Cho
    Hong-Kyun Park
    Byung-Chul Lee
    Kyung-Ho Yu
    Mi Sun Oh
    Soo Joo Lee
    Jae Guk Kim
    Jae-Kwan Cha
    Dae-Hyun Kim
    Jun Lee
    Man Seok Park
    Dongmin Kim
    Oh Young Bang
    Eung Yeop Kim
    Chul-Ho Sohn
    Hosung Kim
    Hee-Joon Bae
    Dong-Eog Kim
    Scientific Reports, 15 (1)
  • [50] Deep Learning-Based Localization of EEG Electrodes Within MRI Acquisitions
    Pinte, Caroline
    Fleury, Mathis
    Maurel, Pierre
    FRONTIERS IN NEUROLOGY, 2021, 12