Applications of independent component analysis

被引:0
|
作者
Oja, E [1 ]
机构
[1] Helsinki Univ Technol, Neural Networks Res Ctr, Helsinki 02015, Finland
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Blind source separation (BSS) is a computational technique for revealing hidden factors that underlie sets of measurements or signals. The most basic statistical approach to BSS is Independent Component Analysis (ICA). It assumes a statistical model whereby the observed multivariate data are assumed to be linear or nonlinear mixtures of some unknown latent variables with nongaussian probability densities. The mixing coefficients are also unknown. By ICA, these latent variables can be found. This article gives the basics of linear ICA and reviews the efficient FastICA algorithm. Then, the paper lists recent applications of BSS and ICA on a variety of problem domains.
引用
收藏
页码:1044 / 1051
页数:8
相关论文
共 50 条
  • [41] Research of independent component analysis
    Yu, X
    Cheng, X
    Fu, Y
    Zhou, J
    Hao, H
    Yang, X
    Huang, H
    Zhang, T
    Fang, L
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 4804 - 4809
  • [42] A robustification of independent component analysis
    Brys, G
    Hubert, M
    Rousseeuw, PJ
    JOURNAL OF CHEMOMETRICS, 2005, 19 (5-7) : 364 - 375
  • [43] Spectral independent component analysis
    Singer, A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) : 135 - 144
  • [44] Topographic independent component analysis
    Hyvärinen, A
    Hoyer, PO
    Inki, M
    NEURAL COMPUTATION, 2001, 13 (07) : 1527 - 1558
  • [45] Independent component analysis and beyond
    Ja, E
    Harmeling, S
    Almeida, L
    SIGNAL PROCESSING, 2004, 84 (02) : 215 - 216
  • [46] Independent component analysis in noise
    Tong, L
    Kung, SY
    CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 1589 - 1593
  • [47] Boosting Independent Component Analysis
    Li, YunPeng
    Ye, ZhaoHui
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1367 - 1371
  • [48] Independent component spectral analysis
    Zanardo Honorio, Bruno Cesar
    Sanchetta, Alexandre Cruz
    Leite, Emilson Pereira
    Vidal, Alexandre Campane
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2014, 2 (01): : SA21 - +
  • [49] Discriminant Independent Component Analysis
    Dhir, Chandra Shekhar
    Lee, Soo-Young
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 845 - 857
  • [50] Efficient independent component analysis
    Chen, Aiyou
    Bickel, Peter J.
    ANNALS OF STATISTICS, 2006, 34 (06): : 2825 - 2855