Engineering Materials at the Nanoscale for Triboelectric Nanogenerators

被引:206
|
作者
Zhou, Yihao [1 ]
Deng, Weili [1 ]
Xu, Jing [1 ]
Chen, Jun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
来源
CELL REPORTS PHYSICAL SCIENCE | 2020年 / 1卷 / 08期
关键词
ENERGY-CONVERSION EFFICIENCY; SURFACE-CHARGE DENSITY; OUTPUT PERFORMANCE; FRICTION LAYER; FLUOROCARBON PLASMA; CONTACT ELECTRIFICATION; BIOMECHANICAL ENERGY; DIELECTRIC-CONSTANT; HIGHLY TRANSPARENT; WRINKLE STRUCTURE;
D O I
10.1016/j.xcrp.2020.100142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Taking advantage of the coupling effect of contact electrification and electrostatic induction, triboelectric nanogenerators can effectively convert various forms of ambient mechanical energy into electricity, and therefore have attracted much attention, with broad applications in energy harvesting, active sensing, and biomedical therapy, which are anticipated to be an indispensable component in the era of the Internet of things. To improve the mechanical-to-electrical conversion, various strategies have been reported to engineer the materials used at the nanoscale with physical, chemical, biological, and hybrid approaches. These strategies to enhance the output performance and extend the applications of triboelectric nanogenerators are comprehensively reviewed and summarized in this article. Furthermore, perspectives are also discussed in depth, with an emphasis on future research directions to further advance developments within the field.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Native proteins for triboelectric nanogenerators
    Huang, Yuxuan
    Zheng, Haiyan
    Zhang, Jianquan
    Shen, Yue
    Xu, Xinrong
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (06) : 2578 - 2605
  • [42] Triboelectric nanogenerators for smart agriculture
    Dai, Shufen
    Li, Xunjia
    Jiang, Chengmei
    Ping, Jianfeng
    Ying, Yibin
    INFOMAT, 2023, 5 (02)
  • [43] Advances in Bioresorbable Triboelectric Nanogenerators
    Kang, Minki
    Lee, Dong-Min
    Rubab, Najaf
    Kim, So-Hee
    Hyun, Inah
    Kim, Sang-Woo
    CHEMICAL REVIEWS, 2023, 123 (19) : 11559 - 11618
  • [44] Application of Triboelectric Nanogenerators on Manipulators
    Xu, Zhongyang
    Zhang, Jiabin
    Huang, Junhan
    Wang, Zhongxian
    Shi, Yong
    IEEE ACCESS, 2023, 11 : 80151 - 80171
  • [45] Wearable Triboelectric Nanogenerators for Therapeutics
    Xiao, Xiao
    Chen, Guorui
    Libanori, Alberto
    Chen, Jun
    TRENDS IN CHEMISTRY, 2021, 3 (04): : 279 - 290
  • [46] Triboelectric Nanogenerators: State of the Art
    Shi, Zhan
    Zhang, Yanhu
    Gu, Jiawei
    Liu, Bao
    Fu, Hao
    Liang, Hongyu
    Ji, Jinghu
    SENSORS, 2024, 24 (13)
  • [47] Advances in Bioinspired Triboelectric Nanogenerators
    Mayer, Mylan
    Xiao, Xiao
    Yin, Junyi
    Chen, Guorui
    Xu, Jing
    Chen, Jun
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (12)
  • [48] Towards optimized triboelectric nanogenerators
    Dharmasena, R. D. I. G.
    Silva, S. R. P.
    NANO ENERGY, 2019, 62 : 530 - 549
  • [49] Recent progress of triboelectric nanogenerators as self-powered sensors in transportation engineering
    Nazar, Ali Matin
    Narazaki, Yasutaka
    Rayegani, Arash
    Sardo, Fatemeh Rahimi
    MEASUREMENT, 2022, 203
  • [50] Biodegradable Polymers in Triboelectric Nanogenerators
    Mi, Yajun
    Lu, Yin
    Shi, Yalin
    Zhao, Zequan
    Wang, Xueqing
    Meng, Jiajing
    Cao, Xia
    Wang, Ning
    POLYMERS, 2023, 15 (01)