Multi-view classification with semi-supervised learning for SAR target recognition

被引:28
|
作者
Zhang, Yukun [1 ]
Guo, Xiansheng [1 ]
Ren, Haohao [1 ]
Li, Lin [1 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Multiple views; Label propagation; Expectation maximization; Convolutional neural networks; Synthetic aperture radar; SPARSE REPRESENTATION; DECISION FUSION; IMAGES;
D O I
10.1016/j.sigpro.2021.108030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A large number of labeled samples are required for convolutional neural network (CNN) to train a deep network model with satisfactory generalization ability. However, it is fairly expensive to obtain sufficient labeled samples in most synthetic aperture radar (SAR) applications. To deal with the problem, in this paper, we propose a novel multi-view classification method with semi-supervised learning for SAR target recognition, which mainly contains a CNN model with the label propagation ability (CNN-LP) and a new expectation maximization (EM) based multi-view fusion strategy. In the training phase, an initial CNN model is trained with limited labeled samples, which is further used to assign pseudo labels for unlabeled samples by the label propagation. Then we can obtain a robust CNN-LP model by alternately updating the model and propagating labels. In the testing phase, the CNN-LP model is used to generate the classification probabilities. To further alleviate the sensitivity of the model towards large depression angle variations, we construct a multi-view label set (MLS) by selecting possible labels adaptively according to the predicted probabilities. Finally, a new EM-based strategy is designed to give the predicted labels. Unlike most of existing multi-view methods which have strict constraints on the angle interval among multiple views, the proposed strategy is free from the aspect interval limitation. Experiments conducted on different datasets all demonstrate the robustness and effectiveness of the proposed method for SAR target recognition. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Multi-view Semi-Supervised Learning for Cooperative Spectrum Sensing
    Li, Lusi
    Slayton, Laura
    Li, Hepeng
    He, Haibo
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [42] Semi-supervised Deep Representation Learning for Multi-View Problems
    Noroozi, Vahid
    Bahaadini, Sara
    Zheng, Lei
    Xie, Sihong
    Shao, Weixiang
    Yu, Philip S.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 56 - 64
  • [43] Multi-view Semi-supervised Learning Using Privileged Information
    Smirnov, Evgueni
    Delava, Richard
    Diris, Ron
    Nikolaev, Nikolay
    24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023, 2023, 1826 : 144 - 152
  • [44] Semi-supervised one-pass multi-view learning
    Changming Zhu
    Zhe Wang
    Rigui Zhou
    Lai Wei
    Xiafen Zhang
    Yi Ding
    Neural Computing and Applications, 2019, 31 : 8117 - 8134
  • [45] Semi-Supervised Multi-View Learning for Gene Network Reconstruction
    Ceci, Michelangelo
    Pio, Gianvito
    Kuzmanovski, Vladimir
    Dzeroski, Saso
    PLOS ONE, 2015, 10 (12):
  • [46] Inductive Multi-View Semi-supervised Learning with a Consensus Graph
    N. Ziraki
    A. Bosaghzadeh
    F. Dornaika
    Z. Ibrahim
    N. Barrena
    Cognitive Computation, 2023, 15 : 904 - 913
  • [47] Semi-supervised one-pass multi-view learning
    Zhu, Changming
    Wang, Zhe
    Zhou, Rigui
    Wei, Lai
    Zhang, Xiafen
    Ding, Yi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 8117 - 8134
  • [48] Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA
    He, Congqing
    Peng, Li
    Le, Yuquan
    He, Jiawei
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT II, 2019, 11440 : 343 - 354
  • [49] Multi-view Semi-supervised Learning for Web Image Annotation
    Hu, Mengqiu
    Yang, Yang
    Zhang, Hanwang
    Shen, Fumin
    Shao, Jie
    Zou, Fuhao
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 947 - 950
  • [50] Active Semi-Supervised Clustering based on Multi-View Learning
    Zhang, Xue
    Zhao, Dong-yan
    Wei, Shan
    Xiao, Wang-xin
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL III, 2009, : 495 - +