Effect of surface waviness on MHD thermo-gravitational convection of Cu-Al2O3-water hybrid nanofluid in a porous oblique enclosure

被引:49
|
作者
Biswas, Nirmalendu [1 ]
Manna, Nirmal K. [2 ]
Chamkha, Ali J. [3 ,4 ]
Mandal, Dipak Kumar [5 ]
机构
[1] Jadavpur Univ, Dept Power Engn, Kolkata 700106, India
[2] Jadavpur Univ, Dept Mech Engn, Kolkata 700032, India
[3] Kuwait Coll Sci & Technol, Fac Engn, Kuwait, Kuwait
[4] King Abdulaziz Univ, Ctr Excellence Desalinat Technol, POB 80200, Jeddah 21589, Saudi Arabia
[5] Coll Engn & Management, Dept Mech Engn, Kolaghat 721171, India
关键词
wavy surface; inclined cavity; hybrid nanofluid; porous medium; magnetohydrodynamics (MHD); free convection; NATURAL-CONVECTION; HEAT-TRANSFER; ENTROPY GENERATION; MIXED CONVECTION; FLOW; CAVITY; MEDIA; VISCOSITY;
D O I
10.1088/1402-4896/ac0f94
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates thermo-fluid phenomena of magnetohydrodynamic (MHD) free convection utilizing Cu-Al2O3/water hybrid nanofluid in a porous oblique enclosure consisting of a heated wavy vertical wall. The coupled transport equations are solved numerically by implementing the dimensionless governing equations and using an indigenous FORTRAN-based CFD code and the finite volume approach (FVM). The flow physics along with heat transfer characteristics are explored thoroughly by varying the number of peaks (n) of the wavy wall at different Darcy-Rayleigh numbers (Ra-m), Darcy numbers (Da), Hartmann numbers (Ha), and nanoparticle volumetric fractions (phi) for different inclinations (gamma) of the enclosure. The study findings indicate that the wavy curved wall does not always guarantee heat transfer boosting even with the increase in the effective heating surface area. An increase in active length of the wavy heated wall by the undulations (which is similar to 320% with 8 undulations) leads to the heat transfer enhancement of similar to 20% compared to a no-undulated cavity. The average heat transfer rate is maximum when n = 4, beyond which heat transfer decreases. Depending upon the setting of the value of Ra-m,Ra- Da, Ha, phi and gamma, the flow-structure and associated heat transfer characteristics are severely altered. Cavity inclination angle has a significant role in controlling the overall thermal performance.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer
    Suresh, S.
    Venkitaraj, K. P.
    Selvakumar, P.
    Chandrasekar, M.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2012, 38 : 54 - 60
  • [22] Numerical study of fluid flow and heat transfer for flow of Cu-Al2O3-water hybrid nanofluid in a microchannel heat sink
    Krishna, V. Murali
    Kumar, M. Sandeep
    Muthalagu, R.
    Kumar, P. Senthil
    Mounika, R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 49 : 1298 - 1302
  • [23] MHD mixed convection of localized heat source/sink in an Al2O3-Cu/water hybrid nanofluid in L-shaped cavity
    Armaghani, T.
    Sadeghi, M. S.
    Rashad, A. M.
    Mansour, M. A.
    Chamkha, Ali J.
    Dogonchi, A. S.
    Nabwey, Hossam A.
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (03) : 2947 - 2962
  • [24] Analysis of Natural Convection–Radiation Interaction Flow in a Porous Cavity with Al2O3–Cu Water Hybrid Nanofluid: Entropy Generation
    S. E. Ahmed
    M. A. Mansour
    A. Mahdy
    Arabian Journal for Science and Engineering, 2022, 47 : 15245 - 15259
  • [25] Finite element method for natural convection flow of Casson hybrid (Al2O3-Cu/water) nanofluid inside H-shaped enclosure
    Nadeem, Sohail
    Rehman, Atiq Ur
    Hamed, Y. S.
    Riaz, Muhammed Bilal
    Ullah, Inayat
    Alzabut, Jehad
    AIP ADVANCES, 2024, 14 (08)
  • [26] Local Thermal Non-equilibrium Analysis of Cu-Al2O3 Hybrid Nanofluid Natural Convection in a Partially Layered Porous Enclosure with Wavy Walls
    Kadhim, Hakim T.
    Al Dulaimi, Zaid M.
    Rona, Aldo
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2023, 9 (03): : 712 - 727
  • [27] Numerical study of heat transfer performance of MHD Al2O3-Cu/water hybrid nanofluid flow over inclined surface
    Soomro, Feroz Ahmed
    Usman, Muhammad
    El-Sapa, Shreen
    Hamid, Muhammad
    Ul Haq, Rizwan
    ARCHIVE OF APPLIED MECHANICS, 2022, 92 (09) : 2757 - 2765
  • [28] Numerical study of heat transfer performance of MHD Al2O3-Cu/water hybrid nanofluid flow over inclined surface
    Feroz Ahmed Soomro
    Muhammad Usman
    Shreen El-Sapa
    Muhammad Hamid
    Rizwan Ul Haq
    Archive of Applied Mechanics, 2022, 92 : 2757 - 2765
  • [29] MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink
    Jamaludin, Anuar
    Naganthran, Kohilavani
    Nazar, Roslinda
    Pop, Ioan
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 84 : 71 - 80
  • [30] Numerical simulation of hybrid nanofluid (Cu/Al2O3-water) flow in a porous enclosure with heated corners and non-Fourier heat flux
    Vijayalakshmi, Periaswamy
    Sivaraj, Ramachandran
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, 237 (05) : 1621 - 1634