CONDEX: COpy Number Detection in EXome Sequences

被引:0
|
作者
Ramachandran, Arthi [1 ]
Micsinai, Mariann [2 ]
Pe'er, Itsik [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, 1214 Amsterdam Ave, New York, NY 10025 USA
[2] NYU, Sch Med, NYU Canc Inst, 530 First Ave, New York, NY 10016 USA
来源
2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS | 2011年
关键词
HIDDEN-MARKOV MODEL; SNP GENOTYPING DATA; SEQ;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Exome sequencing by hybrid capture facilitates obtaining cost-effective, comprehensive data on coding sequence variation from short reads. Standard analysis tools focus on detecting and characterizing variants of single or a few nucleotides while copy number variants (CNVs) that span multiple regions of exon baits have not yet been considered. Here, we present a Hidden Markov Model based method to identify CNVs from exome sequencing data. Using depth coverage and the heterozygosity of SNPs, we call CNVs with per-exon training data from other samples. The method has >90% accuracy in identification of deletions and insertions in simulations.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 50 条
  • [31] An evaluation of copy number variation detection tools for cancer using whole exome sequencing data
    Fatima Zare
    Michelle Dow
    Nicholas Monteleone
    Abdelrahman Hosny
    Sheida Nabavi
    BMC Bioinformatics, 18
  • [32] Modeling exome sequencing data with generalized Gaussian distribution with application to copy number variation detection
    Duan, Junbo
    Wan, Mingxi
    Deng, Hong-Wen
    Wang, Yu-Ping
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [33] isoCNV: in silico optimization of copy number variant detection from targeted or exome sequencing data
    Barcelona-Cabeza, Rosa
    Sanseverino, Walter
    Aiese Cigliano, Riccardo
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [34] Exome copy number variation detection: Use of a pool of unrelated healthy tissue as reference sample
    Wenric, Stephane
    Sticca, Tiberio
    Caberg, Jean-Hubert
    Josse, Claire
    Fasquelle, Corinne
    Herens, Christian
    Jamar, Mauricette
    Max, Stephanie
    Gothot, Andre
    Caers, Jo
    Bours, Vincent
    GENETIC EPIDEMIOLOGY, 2017, 41 (01) : 35 - 40
  • [35] Development of a Convolutional Neural Network Algorithm for Detection of Copy Number Loss in Exome Sequencing Data
    Muthusamy, S.
    Voelkerding, K.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2019, 21 (06): : 1174 - 1175
  • [36] A machine-learning approach for accurate detection of copy number variants from exome sequencing
    Pounraja, Vijay Kumar
    Jayakar, Gopal
    Jensen, Matthew
    Kelkar, Neil
    Girirajan, Santhosh
    GENOME RESEARCH, 2019, 29 (07) : 1134 - 1143
  • [37] isoCNV: in silico optimization of copy number variant detection from targeted or exome sequencing data
    Rosa Barcelona-Cabeza
    Walter Sanseverino
    Riccardo Aiese Cigliano
    BMC Bioinformatics, 22
  • [38] An Evaluation of Copy Number Variation Detection Tools from Whole-Exome Sequencing Data
    Tan, Renjie
    Wang, Yadong
    Kleinstein, Sarah E.
    Liu, Yongzhuang
    Zhu, Xiaolin
    Guo, Hongzhe
    Jiang, Qinghua
    Allen, Andrew S.
    Zhu, Mingfu
    HUMAN MUTATION, 2014, 35 (07) : 899 - 907
  • [39] Exome CNV Overlapping (ECO): an Integrative Copy Number Variation Caller for Exome Sequencing
    Zhang, Peng
    Ling, Hua
    Pugh, Elizabeth
    Doheny, Kim
    GENETIC EPIDEMIOLOGY, 2017, 41 (07) : 700 - 701
  • [40] Identification of copy number variants from exome sequence data
    Samarakoon, Pubudu Saneth
    Sorte, Hanne Sormo
    Kristiansen, Bjorn Evert
    Skodje, Tove
    Sheng, Ying
    Tjonnfjord, Geir E.
    Stadheim, Barbro
    Stray-Pedersen, Asbjorg
    Rodningen, Olaug Kristin
    Lyle, Robert
    BMC GENOMICS, 2014, 15