Tropical Cyclone prediction based on multi-model fusion across Indian coastal region

被引:6
|
作者
Varalakshmi, P. [1 ]
Vasumathi, N. [1 ]
Venkatesan, R. [2 ]
机构
[1] Anna Univ, Dept Comp Technol, MIT Campus, Chennai, Tamil Nadu, India
[2] Natl Inst Ocean Technol, Ocean Observat Syst, Chennai, Tamil Nadu, India
关键词
CNN; Deep learning; Genetic algorithm; Machine learning; Modified C4; 5; Multi-model fusion; Tropical cyclone; INTENSITY ESTIMATION; ATLANTIC;
D O I
10.1016/j.pocean.2021.102557
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Tropical cyclone prediction is essential to limit death toll and damage caused by them. In this paper, a model has been formulated to classify the cyclone as no cyclone, minimal, moderate, extensive, extreme and catastrophic in view of attributes such as Wind Speed(10 m), Rainfall, Wind Direction(10 m), Sea Surface Temperature(2 m), Sea Level Pressure(2 m) and Relative humidity(2 m). The models have been trained using the meteorological data from MERRA-2 Web service which provides time-series data with spatial resolution of approximately 50 km. The cyclone data is taken from RSMC ? New Delhi for Tropical cyclone disturbances over Indian Oceans. Initially, the models are trained using deep learning networks like MLP, LSTM, GRU, RNN, BI-LSTM and CNN. Since CNN gives better results, the CNN model is chosen for further analysis. The hyper parameters of the CNN model are optimized using genetic algorithm. The values drawn from genetic algorithm appear to be promising than the values which were chosen manually in random. The model is then modified by removing the fully connected layer which operates as a classifier in CNN network. The conventional machine learning classifiers like ? Decision Tree, K-Nearest neighbor, logistic regression, Naive Bayes, Random Forest, SVM and XGBoost are used as a classifier in the place of a fully connected layer in CNN. Further to increase the prediction accuracy, C4.5 Decision tree algorithm is modified to be used as a classifier in CNN. Classification is performed by considering the Spatio-temporal data of various important cities in India. The model was tested to classify the category for 5 different cyclones and was also compared with Saffir?Simpson?s scale to validate the correctness of the model. The proposed model gives a better performance compared to the conventional machine learning and deep learning classifiers in terms of time complexity, accuracy, precision and recall and this can supplement the cyclone prediction process of current NWP models. Tropical cyclone prediction is essential to limit death toll and damage caused by them. In this paper, a model has been formulated to classify the cyclone as no cyclone, minimal, moderate, extensive, extreme and catastrophic in view of attributes such as Wind Speed(10 m), Rainfall, Wind Direction(10 m), Sea Surface Temperature(2 m), Sea Level Pressure(2 m) and Relative humidity(2 m). The models have been trained using the meteorological data from MERRA-2 Web service which provides time-series data with spatial resolution of approximately 50 km. The cyclone data is taken from RSMC ? New Delhi for Tropical cyclone disturbances over Indian Oceans. Initially, the models are trained using deep learning networks like MLP, LSTM, GRU, RNN, BI-LSTM and CNN. Since CNN gives better results, the CNN model is chosen for further analysis. The hyper parameters of the CNN model are optimized using genetic algorithm. The values drawn from genetic algorithm appear to be promising than the values which were chosen manually in random. The model is then modified by removing the fully connected layer which operates as a classifier in CNN network. The conventional machine learning classifiers like ? Decision Tree, K-Nearest neighbor, logistic regression, Naive Bayes, Random Forest, SVM and XGBoost are used as a classifier in the place of a fully connected layer in CNN. Further to increase the prediction accuracy, C4.5 Decision tree algorithm is modified to be used as a classifier in CNN. Classification is performed by considering the Spatio-temporal data of various important cities in India. The model was tested to classify the category for 5 different cyclones and was also compared with Saffir?Simpson?s scale to validate the correctness of the model. The proposed model gives a better performance compared to the conventional machine learning and deep learning classifiers in terms of time complexity, accuracy, precision and recall and this can supplement the cyclone prediction process of current NWP models.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Multi-model ensemble forecasting of North Atlantic tropical cyclone activity
    Gabriele Villarini
    Beda Luitel
    Gabriel A. Vecchi
    Joyee Ghosh
    Climate Dynamics, 2019, 53 : 7461 - 7477
  • [12] STUDY OF THE MODIFICATION OF MULTI-MODEL ENSEMBLE SCHEMES FOR TROPICAL CYCLONE FORECASTS
    Zhang Han-bin
    Zhi Xie-fei
    Chen Jing
    Wang Ya-nan
    Wang Yi
    JOURNAL OF TROPICAL METEOROLOGY, 2015, 21 (04) : 389 - 399
  • [13] Multi-model ensemble forecasting of North Atlantic tropical cyclone activity
    Villarini, Gabriele
    Luitel, Beda
    Vecchi, Gabriel A.
    Ghosh, Joyee
    CLIMATE DYNAMICS, 2019, 53 (12) : 7461 - 7477
  • [14] STUDY OF THE MODIFICATION OF MULTI-MODEL ENSEMBLE SCHEMES FOR TROPICAL CYCLONE FORECASTS
    张涵斌
    智协飞
    陈静
    王亚男
    王轶
    Journal of Tropical Meteorology, 2015, 21 (04) : 389 - 399
  • [15] Prediction of glass-forming ability based on multi-model fusion
    Zeng, Yangchuan
    Tian, Zean
    Zheng, Quan
    Jiang, Mingxiang
    Peng, Yikun
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2024, 623
  • [16] A global evaluation of multi-model ensemble tropical cyclone track probability forecasts
    Titley, Helen A.
    Bowyer, Rebecca L.
    Cloke, Hannah L.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (726) : 531 - 545
  • [17] Navigation Trajectory Prediction Method of Inland Ships Based on Multi-model Fusion
    Zhang Y.
    Gao S.
    He W.
    Cai J.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2022, 33 (10): : 1142 - 1152
  • [18] Air quality PM2.5 prediction based on multi-model fusion
    Zhang, Bo
    Li, Xiaoli
    Zhao, Yanling
    Li, Yang
    Wang, Xinjian
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 4426 - 4431
  • [19] Urban Rainfall Forecasting Method Based on Multi-model Prediction Information Fusion
    Huang, Liu
    Liu, Xuejun
    Wei, Heyi
    2020 THE 6TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM 2020), 2020, : 210 - 214
  • [20] Human Trajectory Prediction Using Similarity-Based Multi-Model Fusion
    Habibi, Golnaz
    How, Jonathan P.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 715 - 722