On the bounded approximation property on subspaces of lp when 0 < p < 1 and related issues

被引:4
|
作者
Cabello Sanchez, Felix [1 ]
Castillo, Jesus M. F. [1 ]
Moreno, Yolanda [2 ]
机构
[1] Univ Extremadura, Inst Matemat, Ave Elvas S-N, E-06071 Badajoz, Spain
[2] Univ Extremadura, Inst Matemat, Escuela Politecn, Ave Elvas S-N, E-06071 Caceres, Spain
关键词
Bounded approximation property; quasi-Banach space; complementably universal; Fraisse limit; BANACH-SPACES; UNIVERSAL BASES;
D O I
10.1515/forum-2018-0174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the bounded approximation property (BAP) in quasi-Banach spaces. In the first part of the paper, we show that the kernel of any surjective operator l(p) -> X has the BAP when X has it and 0 < p <= 1, which is an analogue of the corresponding result of Lusky for Banach spaces. We then obtain and study nonlocally convex versions of the Kadec-Pelczyfisld-Wojtaszczyk complementably universal spaces for Banach spaces with the BAP.
引用
收藏
页码:1533 / 1556
页数:24
相关论文
共 50 条