semipositone;
(n;
p) and conjugate;
Krasnoselskii's fixed-point theorem;
existence theory;
D O I:
10.1016/S0898-1221(03)00079-8
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper establishes existence for semipositone (n, p) and conjugate discrete boundary value problems. Our analysis relies on Krasnoselskii's fixed-point theorem in a cone. (C) 2003 Elsevier Science Ltd. All rights reserved.
机构:
Univ Rey Juan Carlos, Area Matemat Aplicada, ESCET, C Tulipan S-N, Madrid 28933, SpainUniv Rey Juan Carlos, Area Matemat Aplicada, ESCET, C Tulipan S-N, Madrid 28933, Spain
Gordoa, P. R.
Pickering, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rey Juan Carlos, Area Matemat Aplicada, ESCET, C Tulipan S-N, Madrid 28933, SpainUniv Rey Juan Carlos, Area Matemat Aplicada, ESCET, C Tulipan S-N, Madrid 28933, Spain
机构:
Serbian Acad Sci, Math Inst, Knez Mihailova 36-3, Belgrade 11000, Serbia
King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi ArabiaSerbian Acad Sci, Math Inst, Knez Mihailova 36-3, Belgrade 11000, Serbia
Stevic, Stevo
Alghmdi, Mohammed A.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi ArabiaSerbian Acad Sci, Math Inst, Knez Mihailova 36-3, Belgrade 11000, Serbia
Alghmdi, Mohammed A.
Alotaibi, Abdullah
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi ArabiaSerbian Acad Sci, Math Inst, Knez Mihailova 36-3, Belgrade 11000, Serbia
Alotaibi, Abdullah
Shahzad, Naseer
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi ArabiaSerbian Acad Sci, Math Inst, Knez Mihailova 36-3, Belgrade 11000, Serbia