Chebotarev density theorem;
least prime ideal;
Linnik's theorem;
binary quadratic forms;
elliptic curves;
modular forms;
log-free zero density estimate;
ZERO-FREE REGIONS;
RESIDUE;
D O I:
10.2140/ant.2017.11.1135
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove an explicit version of Weiss' bound on the least norm of a prime ideal in the Chebotarev density theorem, which is a significant improvement on the work of Lagarias, Montgomery, and Odlyzko. As an application, we prove the first explicit, nontrivial, and unconditional upper bound for the least prime represented by a positive-definite primitive binary quadratic form. We also consider applications to elliptic curves and congruences for the Fourier coefficients of holomorphic cuspidal modular forms.
机构:
Sorbonne Univ, Univ Paris Cite, Inst Math Jussieu Paris Rive Gauche, CNRS UMR 7586, Paris, FranceSorbonne Univ, Univ Paris Cite, Inst Math Jussieu Paris Rive Gauche, CNRS UMR 7586, Paris, France
de la Breteche, Regis
Fiorilli, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Inst Math Orsay, Orsay, FranceSorbonne Univ, Univ Paris Cite, Inst Math Jussieu Paris Rive Gauche, CNRS UMR 7586, Paris, France
Fiorilli, Daniel
Jouve, Florent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, CNRS UMR 5251, Bordeaux INP, Talence, FranceSorbonne Univ, Univ Paris Cite, Inst Math Jussieu Paris Rive Gauche, CNRS UMR 7586, Paris, France