Uniqueness in inverse acoustic scattering with unbounded gradient across Lipschitz surfaces

被引:3
|
作者
Mantile, Andrea [1 ]
Posilicano, Andrea [2 ]
Sini, Mourad [3 ]
机构
[1] Univ Reims, Lab Math, CNRS, FR3399, Moulin Housse BP 1039, F-51687 Reims, France
[2] Univ Insubria, DiSAT, Sez Matemat, Via Valleggio 11, I-22100 Como, Italy
[3] Austrian Acad Sci, RICAM, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Inverse scattering; Acoustic equation; Schrodinger operators; GLOBAL UNIQUENESS; CONDUCTIVITIES; OPERATORS; EQUATION; FORMULA;
D O I
10.1016/j.jde.2018.05.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove uniqueness in inverse acoustic scattering in the case the density of the medium has an unbounded gradient across Sigma subset of Gamma = partial derivative Omega, where Omega is a bounded open subset of R-3 with a Lipschitz boundary. This follows from a uniqueness result in inverse scattering for Schrodinger operators with singular delta-type potential supported on the surface Gamma and of strength alpha is an element of L-p (Gamma), p > 2. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:4101 / 4132
页数:32
相关论文
共 50 条