Zero-Temperature Dynamics in the Dilute Curie-Weiss Model

被引:5
|
作者
Gheissari, Reza [1 ]
Newman, Charles M. [1 ,2 ]
Stein, Daniel L. [1 ,2 ,3 ,4 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
[4] NYU Shanghai, NYU ECNU Inst Phys, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
Random Ising model; Zero-temperature dynamics; Minimum cut; Dense random graph; Constraint satisfaction; Curie-Weiss model; ISING-MODEL; COMPLEXITY;
D O I
10.1007/s10955-018-2087-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Ising model on a dense Erdos-Renyi random graph, G(N, p), with p > 0 fixed-equivalently, a disordered Curie-Weiss Ising model with couplings-at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G(N, p) with p > 0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie-Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.
引用
收藏
页码:1009 / 1028
页数:20
相关论文
共 50 条
  • [41] On the Curie-Weiss law for ferromagnetic metals
    Miyai, E
    Ohkawa, FJ
    PHYSICA B, 2000, 281 : 851 - 852
  • [42] Mechanism of the Curie-Weiss law in ferroelectrics
    Zhang, L
    Zhong, WL
    Wang, CL
    Peng, YP
    Zhang, Q
    CHINESE PHYSICS LETTERS, 1999, 16 (08) : 600 - 601
  • [43] MODERATE DEVIATIONS FOR A CURIE-WEISS MODEL WITH DYNAMICAL EXTERNAL FIELD
    Reichenbachs, Anselm
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 725 - 739
  • [44] Metastability and convergence to equilibrium for the random field Curie-Weiss model
    Mathieu, P
    Picco, P
    JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (3-4) : 679 - 732
  • [45] A STUDY OF CURIE-WEISS BEHAVIOR IN FERROFLUIDS
    HOLMES, M
    OGRADY, K
    POPPLEWELL, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 85 (1-3) : 47 - 50
  • [46] ASYMPTOTICS OF MAXIMUM-LIKELIHOOD ESTIMATORS FOR THE CURIE-WEISS MODEL
    COMETS, F
    GIDAS, B
    ANNALS OF STATISTICS, 1991, 19 (02): : 557 - 578
  • [47] THE CURIE-WEISS BEHAVIOR OF BIREFRINGENCE IN FERROFLUIDS
    YUSUF, NA
    ABUSAFIA, H
    ABUALJARAYESH, I
    JOURNAL OF APPLIED PHYSICS, 1993, 73 (10) : 6136 - 6138
  • [48] Study of Curie-Weiss behaviour in ferrofluids
    Holmes, M.
    O'Grady, K.
    Popplewell, J.
    1600, (85): : 1 - 3
  • [49] EXCHANGE COUPLING AND THE CURIE-WEISS LAW
    WANGSNESS, RK
    JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (10): : 1656 - 1656
  • [50] GENERALIZED CURIE-WEISS LAW - COMMENT
    FAHNLE, M
    SOULETIE, J
    PHYSICAL REVIEW B, 1985, 32 (05): : 3328 - 3330