Zero-Temperature Dynamics in the Dilute Curie-Weiss Model
被引:5
|
作者:
Gheissari, Reza
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USANYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
Gheissari, Reza
[1
]
Newman, Charles M.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R ChinaNYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
Newman, Charles M.
[1
,2
]
Stein, Daniel L.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
NYU Shanghai, NYU ECNU Inst Phys, Shanghai, Peoples R ChinaNYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
Stein, Daniel L.
[1
,2
,3
,4
]
机构:
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
[4] NYU Shanghai, NYU ECNU Inst Phys, Shanghai, Peoples R China
Random Ising model;
Zero-temperature dynamics;
Minimum cut;
Dense random graph;
Constraint satisfaction;
Curie-Weiss model;
ISING-MODEL;
COMPLEXITY;
D O I:
10.1007/s10955-018-2087-9
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We consider the Ising model on a dense Erdos-Renyi random graph, G(N, p), with p > 0 fixed-equivalently, a disordered Curie-Weiss Ising model with couplings-at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G(N, p) with p > 0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie-Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.