Zero-Temperature Dynamics in the Dilute Curie-Weiss Model

被引:5
|
作者
Gheissari, Reza [1 ]
Newman, Charles M. [1 ,2 ]
Stein, Daniel L. [1 ,2 ,3 ,4 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
[4] NYU Shanghai, NYU ECNU Inst Phys, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
Random Ising model; Zero-temperature dynamics; Minimum cut; Dense random graph; Constraint satisfaction; Curie-Weiss model; ISING-MODEL; COMPLEXITY;
D O I
10.1007/s10955-018-2087-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Ising model on a dense Erdos-Renyi random graph, G(N, p), with p > 0 fixed-equivalently, a disordered Curie-Weiss Ising model with couplings-at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G(N, p) with p > 0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie-Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.
引用
收藏
页码:1009 / 1028
页数:20
相关论文
共 50 条
  • [1] Zero-Temperature Dynamics in the Dilute Curie–Weiss Model
    Reza Gheissari
    Charles M. Newman
    Daniel L. Stein
    Journal of Statistical Physics, 2018, 172 : 1009 - 1028
  • [2] Metastability for the dilute Curie-Weiss model with Glauber dynamics
    Bovier, Anton
    Marello, Saeda
    Pulvirenti, Elena
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [3] FLUCTUATIONS IN DILUTE ANTIFERROMAGNETS - CURIE-WEISS MODELS
    DEMATOS, JMGA
    SEGUNDO, JAB
    PEREZ, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (10): : 2819 - 2830
  • [4] A Curie-Weiss Model with Dissipation
    Paolo Dai Pra
    Markus Fischer
    Daniele Regoli
    Journal of Statistical Physics, 2013, 152 : 37 - 53
  • [5] The Curie-Weiss model with Complex Temperature: Phase Transitions
    Shamis, Mira
    Zeitouni, Ofer
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (02) : 569 - 591
  • [6] A Curie-Weiss Model with Dissipation
    Pra, Paolo Dai
    Fischer, Markus
    Regoli, Daniele
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (01) : 37 - 53
  • [7] On the averaged dynamics of the random field Curie-Weiss model
    Fontes, LR
    Mathieu, P
    Picco, P
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (04): : 1212 - 1245
  • [8] CURIE-WEISS TEMPERATURE DEPENDENCE OF PARAELASTICITY
    TRETKOWSKI, J
    VOLKL, J
    ALEFELD, G
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1971, A 26 (03): : 588 - +
  • [9] Two Groups in a Curie-Weiss Model
    Kirsch, Werner
    Toth, Gabor
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (02)
  • [10] Approximating the magnetization in the Curie-Weiss model
    Lu, Yingdong
    STATISTICS & PROBABILITY LETTERS, 2022, 190