Observable Zitterbewegung in curved spacetimes

被引:7
|
作者
Kobakhidze, Archil [1 ]
Manning, Adrian [1 ]
Tureanu, Anca [2 ]
机构
[1] Univ Sydney, Sch Phys, ARC Ctr Excellence Particle Phys Terascale, Sydney, NSW 2006, Australia
[2] Univ Helsinki, Dept Phys, POB 64, Helsinki 00014, Finland
基金
芬兰科学院; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
PARTICLE CREATION;
D O I
10.1016/j.physletb.2016.03.049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Zitterbewegung, as it was originally described by Schrodinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [31] Rotating ideal gases in curved spacetimes
    Ho, JW
    Kang, GW
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 35 : S623 - S628
  • [32] Classical and quantum spins in curved spacetimes
    Silenko, Alexander J.
    ACTA PHYSICA POLONICA B, 2008, : 87 - 107
  • [33] Presheaves of Superselection Structures in Curved Spacetimes
    Ezio Vasselli
    Communications in Mathematical Physics, 2015, 335 : 895 - 933
  • [34] Evolution of thick shells in curved spacetimes
    Khosravi, Sh
    Khakshournia, S.
    Mansouri, R.
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (20) : 5927 - 5939
  • [35] Presheaves of Superselection Structures in Curved Spacetimes
    Vasselli, Ezio
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (02) : 895 - 933
  • [36] Dirac Operators on Noncommutative Curved Spacetimes
    Schenkel, Alexander
    Uhlemann, Christoph F.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [37] Curved spacetimes and curved graphene: A status report of the Weyl symmetry approach
    Iorio, Alfredo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (05):
  • [38] Observable effects in a class of spherically symmetric static Finsler spacetimes
    Laemmerzahl, Claus
    Perlick, Volker
    Hasse, Wolfgang
    PHYSICAL REVIEW D, 2012, 86 (10):
  • [39] The generalized Heun equation in QFT in curved spacetimes
    Batic, D.
    Schmid, H.
    Winkelmeier, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40): : 12559 - 12564
  • [40] POSITIVE AND NEGATIVE FREQUENCY DECOMPOSITIONS IN CURVED SPACETIMES
    PANANGADEN, P
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (01): : 31 - 31