Mediterranean forest species mapping using classification of Hyperion imagery

被引:10
|
作者
Galidaki, Georgia [1 ]
Gitas, Ioannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Forestry & Nat Environm, GR-54006 Thessaloniki, Greece
关键词
hyperspectral; Mediterranean ecosystem; pixel-based; object-based; OBJECT-BASED CLASSIFICATION; HYPERSPECTRAL DATA; INVASIVE PLANT; PROCESSING HYPERION; ACCURACY ASSESSMENT; LAND-USE; DISCRIMINATION; VEGETATION; COVER; BIODIVERSITY;
D O I
10.1080/10106049.2014.883439
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Regional operational forest species mapping is an active research topic that aims to provide the systematic and updatable information necessary for understanding and monitoring the rapidly changing forest environment. In this study, we investigated the potential of satellite hyperspectral imagery in regional forest species mapping by employing a pixel-based and an object-based nearest neighbour classifier in two different Mediterranean study areas. The overall thematic accuracy of the produced maps was assessed using reference data collected in the field and ranged between 0.72 and 0.83. No approach was found to be superior for the study areas. The McNemar test showed no statistically significant difference at the 95% confidence level in the classification accuracies achieved by the two approaches. Both pixel- and object-based approaches provide useful maps, suggesting that regional forest species mapping from space has much potential.
引用
收藏
页码:48 / 61
页数:14
相关论文
共 50 条
  • [31] Evaluation of Morphological Texture Features for Mangrove Forest Mapping and Species Discrimination Using Multispectral IKONOS Imagery
    Huang, Xin
    Zhang, Liangpei
    Wang, Le
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (03) : 393 - 397
  • [32] Tree Detection and Species Classification in a Mixed Species Forest Using Unoccupied Aircraft System (UAS) RGB and Multispectral Imagery
    Sivanandam, Poornima
    Lucieer, Arko
    REMOTE SENSING, 2022, 14 (19)
  • [33] Mapping Coarse Woody Debris with Random Forest Classification of Centimetric Aerial Imagery
    Queiroz, Gustavo Lopes
    McDermid, Gregory J.
    Castilla, Guillermo
    Linke, Julia
    Rahman, Mir Mustafizur
    FORESTS, 2019, 10 (06):
  • [34] ASSESSING THE SIGNIFICANCE OF HYPERION SPECTRAL BANDS IN FOREST CLASSIFICATION
    Newnham, G. J.
    Lazaridis, D.
    Sims, N. C.
    Robinson, A. P.
    Culvenor, D. S.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 147 - 149
  • [35] Mapping wild pear trees (Pyrus bourgaeana) in Mediterranean forest using high-resolution QuickBird satellite imagery
    Arenas-Castro, S.
    Julien, Y.
    Jimenez-Munoz, J. C.
    Sobrino, J. A.
    Fernandez-Haeger, J.
    Jordano-Barbudo, D.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (9-10) : 3376 - 3396
  • [36] MAPPING AND CHANGE ANALYSIS IN MANGROVE FOREST BY USING LANDSAT IMAGERY
    Dan, T. T.
    Chen, C. F.
    Chiang, S. H.
    Ogawa, S.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 3 (08): : 109 - 116
  • [37] Object Oriented Classification for Mapping Mixed and Pure Forest Stands Using Very-High Resolution Imagery
    Oreti, Loredana
    Giuliarelli, Diego
    Tomao, Antonio
    Barbati, Anna
    REMOTE SENSING, 2021, 13 (13)
  • [38] Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
    Rodriguez-Galiano, V. F.
    Chica-Olmo, M.
    Abarca-Hernandez, F.
    Atkinson, P. M.
    Jeganathan, C.
    REMOTE SENSING OF ENVIRONMENT, 2012, 121 : 93 - 107
  • [39] Species level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery
    Caglayan, Semiha Demirbas
    Leloglu, Ugur Murat
    Ginzler, Christian
    Psomas, Achilleas
    Zeydanli, Ugur S.
    Bilgin, C. Can
    Waser, Lars T.
    GEOCARTO INTERNATIONAL, 2022, 37 (06) : 1587 - 1606
  • [40] Mapping species distribution of Canarian Monteverde forest by field spectroradiometry and satellite imagery
    Martin-Luis, Antonio
    Arbelo, Manuel
    Hernandez-Leal, Pedro
    Arbelo-Bayo, Manuel
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVIII, 2016, 9998