Pareto Complexity of Two-Parameter FPT Problems: A Case Study for Partial Vertex Cover

被引:0
|
作者
Damaschke, Peter [1 ]
机构
[1] Chalmers Univ, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
来源
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a framework for the complexity of algorithms for FPT problems with two separate parameters k, in and with exponential time bounds 0*(x(k)y(m)) where x, y > 1 are constant bases. An optimal combination of bases x,p can be chosen depending on the ratio m/k. As a first illustration we apply the framework to the problem of finding, in a graph, a vertex cover of size k that leaves at most In edges uncovered. We report the best branching rules we could find so far, for all ranges of ratio m/k.
引用
收藏
页码:110 / 121
页数:12
相关论文
共 50 条
  • [31] Prophet inequalities for two-parameter optimal stopping problems
    Tanaka, Teruo
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2007, 28 (02): : 159 - 172
  • [32] TWO-PARAMETER QUANTUM VERTEX REPRESENTATIONS VIA FINITE GROUPS AND THE MCKAY CORRESPONDENCE
    Jing, Naihuan
    Zhang, Honglian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) : 3769 - 3797
  • [33] The Complexity of König Subgraph Problems and Above-Guarantee Vertex Cover
    Sounaka Mishra
    Venkatesh Raman
    Saket Saurabh
    Somnath Sikdar
    C. R. Subramanian
    Algorithmica, 2011, 61 : 857 - 881
  • [34] Parameterized Complexity of Coloring Problems: Treewidth versus Vertex Cover (Extended Abstract)
    Fiala, Jiri
    Golovach, Petr A.
    Kratochvil, Jan
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, 2009, 5532 : 221 - +
  • [35] SOLVING GENERALIZED CDT PROBLEMS VIA TWO-PARAMETER EIGENVALUES
    Sakaue, Shinsaku
    Nakatsukasa, Yuji
    Takeda, Akiko
    Iwata, Satoru
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (03) : 1669 - 1694
  • [36] To solving problems of algebra for two-parameter matrices. VIII
    Kublanovskaya V.N.
    Journal of Mathematical Sciences, 2011, 176 (1) : 83 - 92
  • [37] Solving two-parameter eigenvalue problems using an alternating method
    Eisenmann, Henrik
    Nakatsukasa, Yuji
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 643 : 137 - 160
  • [38] To solving problems of algebra for two-parameter matrices. IV
    Kublanovskaya V.N.
    Journal of Mathematical Sciences, 2010, 165 (5) : 562 - 573
  • [39] To solving problems of algebra for two-parameter matrices. VII
    Kublanovskaya V.N.
    Khazanov V.B.
    Journal of Mathematical Sciences, 2011, 176 (1) : 78 - 82
  • [40] To solving problems of algebra for two-parameter matrices. IX
    V. N. Kublanovskaya
    Journal of Mathematical Sciences, 2012, 182 (6) : 814 - 822