On 2-(n2, 2n, 2n-1) designs with three intersection numbers

被引:4
|
作者
Caggegi, Andrea [1 ]
Falcone, Giovanni [1 ]
机构
[1] Univ Palermo, Dipartimento Metodi & Modelli Matemat, I-90128 Palermo, Italy
关键词
2-designs;
D O I
10.1007/s10623-007-9051-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The simple incidence structure D(A,2), formed by the points and the unordered pairs of distinct parallel lines of a finite affine plane A = (P, L) of order n > 4, is a 2-(n(2), 2n, 2n - 1) design with intersection numbers 0, 4, n. In this paper, we show that the converse is true, When n >= 5 is an odd integer.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 50 条
  • [21] An improved reverse converter for the moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Hosseinzadeh, Mehdi
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    IEICE ELECTRONICS EXPRESS, 2008, 5 (17) : 672 - 677
  • [22] Reverse Converters for the Moduli Set {{2n, 2n-1-1, 2n-1, 2n+1-1}( n Even)
    Mohan, P. V. Ananda
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3605 - 3634
  • [23] Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set {2n-1, 2n, 2n+1}
    Chang, Chip-Hong
    Low, Jeremy Yung Shern
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (11) : 2686 - 2697
  • [24] Residue to binary number converters for (2n-1,2n,2n+1)
    Wang, YK
    Song, XY
    Aboulhamid, M
    PROCEEDINGS OF THE 8TH GREAT LAKES SYMPOSIUM ON VLSI, 1998, : 174 - 178
  • [25] A Unified {2n-1, 2n, 2n+1} RNS Scaler with Dual Scaling Constants
    Low, Jeremy Yung Shern
    Tay, Thian Fatt
    Chang, Chip-Hong
    2012 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2012, : 296 - 299
  • [26] Adder based residue to binary number converters for (2n-1, 2n, 2n+1)
    Wang, Y
    Song, XY
    Aboulhamid, M
    Shen, H
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) : 1772 - 1779
  • [27] RNS-to-binary converter for a new three-moduli set {2n+1-1, 2n, 2n-1}
    Mohan, Pernmaraju V. Ananda
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2007, 54 (09) : 775 - 779
  • [28] Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    Dadkhah, Chitra
    Kavehei, Omid
    Timarchi, Somayeh
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (04) : 823 - 835
  • [29] A reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M
    Srikanthan, T
    Clarke, CT
    14TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1999, : 168 - 175
  • [30] Reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M.
    Srikanthan, T.
    Clarke, C.T.
    Proceedings - Symposium on Computer Arithmetic, 1999, : 168 - 175