Detection of Anomalous Grapevine Berries Using Variational Autoencoders

被引:8
|
作者
Miranda, Miro [1 ]
Zabawa, Laura [2 ]
Kicherer, Anna [3 ]
Strothmann, Laurenz [4 ]
Rascher, Uwe [4 ]
Roscher, Ribana [1 ,5 ]
机构
[1] Univ Bonn, Inst Geodesy & Geoinformat, Remote Sensing Grp, Bonn, Germany
[2] Univ Bonn, Inst Geodesy & Geoinformat, Geodesy, Bonn, Germany
[3] Inst Grapevine Breeding Geilweilerhof, Julius Kuhn Inst, Geilweilerhof, Germany
[4] Forschungszentrum Julich, Inst Bio & Geosci IBG 2, Plant Sci, Julich, Germany
[5] Tech Univ Munich, Int AI Future Lab, Munich, Germany
来源
关键词
autoencoder; deep learning; anomaly detection; viticulture; disease detection; NEURAL-NETWORKS; DEEP; IMAGES;
D O I
10.3389/fpls.2022.729097
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Grapevine is one of the economically most important quality crops. The monitoring of the plant performance during the growth period is, therefore, important to ensure a high quality end-product. This includes the observation, detection, and respective reduction of unhealthy berries (physically damaged, or diseased). At harvest, it is not necessary to know the exact cause of the damage, but rather if the damage is apparent or not. Since a manual screening and selection before harvest is time-consuming and expensive, we propose an automatic, image-based machine learning approach, which can lead observers directly to anomalous areas without the need to monitor every plant manually. Specifically, we train a fully convolutional variational autoencoder with a feature perceptual loss on images with healthy berries only and consider image areas with deviations from this model as damaged berries. We use heatmaps which visualize the results of the trained neural network and, therefore, support the decision making for farmers. We compare our method against a convolutional autoencoder that was successfully applied to a similar task and show that our approach outperforms it.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Automated Discovery of Anomalous Features in Ultralarge Planetary Remote-Sensing Datasets Using Variational Autoencoders
    Lesnikowski, Adam
    Bickel, Valentin Tertius
    Angerhausen, Daniel
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6589 - 6600
  • [22] Anomaly detection on household appliances based on variational autoencoders
    Castangia, Marco
    Sappa, Riccardo
    Girmay, Awet Abraha
    Camarda, Christian
    Macii, Enrico
    Patti, Edoardo
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2022, 32
  • [23] Anomaly Detection in Distributed Systems via Variational Autoencoders
    Qian, Yun
    Ying, Shi
    Wang, Bingming
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2822 - 2829
  • [24] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Yu, Qien
    Kavitha, Muthu Subash
    Kurita, Takio
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3241 - 3254
  • [25] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Qien Yu
    Muthu Subash Kavitha
    Takio Kurita
    Applied Intelligence, 2021, 51 : 3241 - 3254
  • [26] Anomaly detection on household appliances based on variational autoencoders
    Castangia, Marco
    Sappa, Riccardo
    Girmay, Awet Abraha
    Camarda, Christian
    Macii, Enrico
    Patti, Edoardo
    Sustainable Energy, Grids and Networks, 2022, 32
  • [27] Blind Channel Equalization using Variational Autoencoders
    Caciularu, Avi
    Burshtein, David
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2018,
  • [28] SRVAE: Super Resolution using Variational Autoencoders
    Heydari, A. Ali
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXI, 2020, 11400
  • [29] DoS and DDoS mitigation using Variational Autoencoders
    Bårli, Eirik Molde
    Yazidi, Anis
    Viedma, Enrique Herrera
    Haugerud, Hårek
    Computer Networks, 2021, 199
  • [30] Modelling urban networks using Variational Autoencoders
    Kempinska, Kira
    Murcio, Roberto
    APPLIED NETWORK SCIENCE, 2019, 4 (01)