Seizure Detection Based on Adaptive Feature Extraction by Applying Extreme Learning Machines

被引:11
|
作者
Baykara, Muhammet [1 ]
Abdulrahman, Awf [2 ]
机构
[1] Firat Univ, Technol Fac, Dept Software Engn, TR-23119 Elazig, Turkey
[2] Dohuk Polytech Univ, Dept Informat Technol, Dohuk 42001, Iraq
关键词
adaptive feature; EEG; extreme learning machines; pattern recognition; seizure detection; EMPIRICAL MODE DECOMPOSITION; WAVELET TRANSFORM; EEG; CLASSIFICATION; EPILEPSY; SYSTEM;
D O I
10.18280/ts.380210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is one of the most common chronic disorder which negatively affects the patients' life. The functionality of the brain can be obtained from brain signals and it is vital to analyze and examine the brain signals in seizure detection processes. In this study, we performed machine learning-based and signal processing methods to detect epileptic signals. To do that, we examined three different EEG signals (healthy, ictal, and interictal) with two different classes (healthy ones and epileptic ones). Our proposed method consists of three stages which are preprocessing, feature extraction, and classification. In the preprocessing phase, EEG signals normalized to scale all samples into [0,1] range. After Stockwell Transform was applied and chaotic features and Parseval's Energy collected from each EEG signal. In the last part, EEG signals were classified with ELM (Extreme Learning Machines) with different parameters. Our study shows the best classification accuracy obtained from the Sigmoid activation function with the number of 100 hidden neurons. The highlights of this study are: Stockwell Transform is used; Entropy values are selected based on the adaptive process. Threshold values are determined according to the error rates; ELM classifier algorithm is applied.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 50 条
  • [41] Feature Bagging and Extreme Learning Machines: Machine Learning with Severe Memory Constraints
    Khan, Kallin
    Ratner, Edward
    Ludwig, Robert
    Lendasse, Amaury
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [42] Oriented Object Detection Based on Adaptive Feature Learning and Enrichment
    Li, Pei
    Zhu, Zhongjie
    Bai, Yongqiang
    Wang, Yuer
    Zhang, Lei
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2735 - 2739
  • [43] Feature extraction from EEG spectrograms for epileptic seizure detection
    Ramos-Aguilar, Ricardo
    Arturo Olvera-Lopez, J.
    Olmos-Pineda, Ivan
    Sanchez-Urrieta, Susana
    PATTERN RECOGNITION LETTERS, 2020, 133 : 202 - 209
  • [44] A Review of Feature Extraction for EEG Epileptic Seizure Detection and Classification
    Boubchir, Larbi
    Daachi, Boubaker
    Pangracious, Vinod
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 456 - 460
  • [45] Feature Adaptive and Cyclic Dynamic Learning Based on Infinite Term Memory Extreme Learning Machine
    Al-Khaleefa, Ahmed Salih
    Ahmad, Mohd Riduan
    Isa, Azmi Awang Md
    Esa, Mona Riza Mohd
    Al-Saffar, Ahmed
    Hassan, Mustafa Hamid
    APPLIED SCIENCES-BASEL, 2019, 9 (05):
  • [46] Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines
    Wang, Xite
    Shen, Derong
    Bai, Mei
    Nie, Tiezheng
    Kou, Yue
    Yu, Ge
    PROCEEDINGS OF ELM-2015, VOL 1: THEORY, ALGORITHMS AND APPLICATIONS (I), 2016, 6 : 135 - 146
  • [47] An efficient cascaded method for network intrusion detection based on extreme learning machines
    Yuanlong Yu
    Zhifan Ye
    Xianghan Zheng
    Chunming Rong
    The Journal of Supercomputing, 2018, 74 : 5797 - 5812
  • [48] An efficient cascaded method for network intrusion detection based on extreme learning machines
    Yu, Yuanlong
    Ye, Zhifan
    Zheng, Xianghan
    Rong, Chunming
    JOURNAL OF SUPERCOMPUTING, 2018, 74 (11): : 5797 - 5812
  • [49] Locally-adaptive feature selection for nonconvulsive seizure detection
    Gifford, Ryan
    Sollars, Caleb
    Singh, Jaysingh
    Krening, Samantha
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [50] Extreme Learning Machines for Web Layer Anomaly Detection
    Kozik, Rafal
    Choras, Michal
    Holubowicz, Witold
    Renk, Rafal
    IMAGE PROCESSING AND COMMUNICATIONS CHALLENGES 8, 2017, 525 : 225 - 232