Stochastic integration with respect to q Brownian motion

被引:22
|
作者
Donati-Martin, C [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 04, France
关键词
Brownian Motion; Stochastic Integration;
D O I
10.1007/s00440-002-0224-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a stochastic integration with respect to a q-Brownian motion (for -1 < q < 1), i.e. a non commutative process X, = a, + a(t)* where the operator at and its adjoint fulfill the q commutation relation a(s)a(t)* - qa(t)*a(s) = (S boolean AND t) 1; under the vacuum state expectation. We show that this process enjoys a predictable representation type property.
引用
收藏
页码:77 / 95
页数:19
相关论文
共 50 条
  • [41] Integration with Respect to Self-Intersection Local Time of a One-Dimensional Brownian Motion
    Najnudel, Joseph
    SEMINAIRE DE PROBABILITES XL, 2007, 1899 : 105 - 116
  • [42] Stochastic integration with respect to a stochastic integral.
    Dinculeanu, N
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1997, 15 (05) : 701 - 721
  • [43] Existence and uniqueness of the entropy solution of a stochastic conservation law with a Q-Brownian motion
    Funaki, Tadahisa
    Gao, Yueyuan
    Hilhorst, Danielle
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (09) : 5860 - 5886
  • [44] Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
    Guerra, Joao
    Nualart, David
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (05) : 1053 - 1075
  • [45] Stochastic Current of Bifractional Brownian Motion
    Guo, Jingjun
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [46] Stochastic regression in terms of Brownian motion
    Calin, Ovidiu
    Chang, Der-Chen
    Hu, Ji-Shan
    APPLICABLE ANALYSIS, 2011, 90 (06) : 899 - 919
  • [47] Stochastic analysis of the fractional Brownian motion
    Decreusefond, L
    Üstünel, AS
    POTENTIAL ANALYSIS, 1999, 10 (02) : 177 - 214
  • [48] Brownian Motion and Stochastic Differential Equations
    Maslowski, Bohdan
    6TH CONFERENCE ON MATHEMATICS AND PHYSICS AT TECHNICAL UNIVERSITIES, PTS 1 AND 2, PROCEEDINGS, 2009, : 17 - 35
  • [49] Stochastic thermodynamics of fractional Brownian motion
    Khadem, S. Mohsen J.
    Klages, Rainer
    Klapp, Sabine H. L.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [50] Stochastic controls of fractional Brownian motion
    Hamed, Ikram
    Chala, Adel
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2024, 32 (01) : 27 - 39