Remarks on Steinhaus' property and ratio sets of sets of positive integers

被引:0
|
作者
Salát, T [1 ]
机构
[1] MFF UK, Bratislava 84215, Slovakia
关键词
D O I
10.1023/A:1022457724187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is closely related to an earlier paper of the author and W. Narkiewicz (cf. [7]) and to some papers concerning ratio sets of positive integers (cf. [4], [5], [12], [13], [14]). The paper contains some new results completing results of the mentioned papers. Among other things a characterization of the Steinhaus property of sets of positive integers is given here by using the concept of ratio sets of positive integers.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 50 条
  • [31] ON SETS OF INTEGERS
    SCHERK, P
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06) : 462 - 462
  • [32] ON THE STEINHAUS PROPERTY AND ERGODICITY VIA THE MEASURE-THEORETIC DENSITY OF SETS
    Kharazishvili, Alexander
    REAL ANALYSIS EXCHANGE, 2019, 44 (01) : 217 - 228
  • [33] Intersective sets for sparse sets of integers
    Bienvenu, Pierre-Yves
    Griesmer, John T.
    Le, Anh N.
    Le, Thai Hoang
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [34] The least common multiple of random sets of positive integers
    Cilleruelo, Javier
    Rue, Juanjo
    Sarka, Paulius
    Zumalacarregui, Ana
    JOURNAL OF NUMBER THEORY, 2014, 144 : 92 - 104
  • [35] Partitions of positive integers into sets without infinite progressions
    Dubickas, Arturas
    MATHEMATICAL COMMUNICATIONS, 2008, 13 (01) : 115 - 122
  • [36] SOME SETS OF SEQUENCES OF POSITIVE INTEGERS AND NORMAL NUMBERS
    SCHWEIGER, F
    SALAT, T
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (09): : 1255 - 1264
  • [37] Quotient and product sets of thin subsets of the positive integers
    Javier Cilleruelo
    D. S. Ramana
    O. Ramaré
    Proceedings of the Steklov Institute of Mathematics, 2017, 296 : 52 - 64
  • [38] Quotient and product sets of thin subsets of the positive integers
    Cilleruelo, Javier
    Ramana, D. S.
    Ramare, O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : 52 - 64
  • [39] Realising sets of integers as mapping degree sets
    Neofytidis, Christoforos
    Wang, Shicheng
    Wang, Zhongzi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1700 - 1717
  • [40] Remarks on a translative formula for sets of positive reach
    Rataj, J
    GEOMETRIAE DEDICATA, 1997, 65 (01) : 59 - 62