Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells

被引:28
|
作者
Zhang, Liang [1 ,2 ]
Zhu, Xun [1 ,2 ]
Kashima, Hiroyuki [3 ]
Li, Jun [1 ,2 ]
Ye, Ding-ding [1 ,2 ]
Liao, Qiang [1 ,2 ]
Regan, John M. [3 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 40003, Peoples R China
[2] Chongqing Univ, Inst Engn Thermophys, Chongqing 400030, Peoples R China
[3] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
关键词
Microbial fuel cell; Bufferless; Anolyte recirculation; Proton transfer; Oxygen transfer; DOMESTIC WASTE-WATER; PROTON-EXCHANGE MEMBRANE; ELECTRICITY-GENERATION; POWER-GENERATION; BIOELECTROCHEMICAL SYSTEMS; PERFORMANCE; BIOFILM; TRANSPORT; REDUCTION; COMMUNITY;
D O I
10.1016/j.biortech.2014.11.106
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 X and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 34
页数:9
相关论文
共 50 条
  • [31] Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells
    Huang, Haobin
    Cheng, Shaoan
    Yang, Jiawei
    Li, Chaochao
    Sun, Yi
    Cen, Kefa
    CHEMICAL ENGINEERING JOURNAL, 2018, 337 : 661 - 670
  • [32] Effects of Using Anode Biofilm and Cathode Biofilm Bacteria as Inoculum on the Start-up, Electricity Generation, and Microbial Community of Air-Cathode Single-Chamber Microbial Fuel Cells
    Yang Jiawei
    Cheng Shaoan
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2019, 28 (02): : 693 - 700
  • [33] Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode
    Zhang, Yaping
    Sun, Jian
    Hou, Bin
    Hu, Yongyou
    JOURNAL OF POWER SOURCES, 2011, 196 (18) : 7458 - 7464
  • [34] CeO2 doped Pt/C as an efficient cathode catalyst for an air-cathode single-chamber microbial fuel cell
    Li, Ling
    Wang, Mingkun
    Cui, Ning
    Ding, Yuedi
    Feng, Qingling
    Zhang, Wenming
    Li, Xiaowei
    RSC ADVANCES, 2016, 6 (31) : 25877 - 25881
  • [35] Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells
    Amade, R.
    Moreno, H. A.
    Hussain, S.
    Vila-Costa, M.
    Bertran, E.
    APPLIED PHYSICS LETTERS, 2016, 109 (16)
  • [36] Influence of Humidity on Performance of Single Chamber Air-Cathode Microbial Fuel Cells with Different Separators
    Lee, Mungyu
    Kondaveeti, Sanath
    Jeon, Taeyeon
    Kim, Inhae
    Min, Booki
    PROCESSES, 2020, 8 (07)
  • [37] Step-feed strategy enhances performance of unbuffered air-cathode microbial fuel cells
    Zhang, Liang
    Zhu, Xun
    Li, Jun
    Kashima, Hiroyuki
    Liao, Qiang
    Regan, John M.
    RSC ADVANCES, 2017, 7 (54): : 33961 - 33966
  • [38] Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
    Cheng, Shaoan
    Logan, Bruce E.
    BIORESOURCE TECHNOLOGY, 2011, 102 (06) : 4468 - 4473
  • [39] Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell
    Li, Na
    Kakarla, Ramesh
    Moon, Jung Mi
    Min, Booki
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 25 (07) : 1114 - 1118
  • [40] Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell
    Sun, Jian
    Hu, Yong-you
    Bi, Zhe
    Cao, Yun-qing
    BIORESOURCE TECHNOLOGY, 2009, 100 (13) : 3185 - 3192