Interpolation functions in control volume finite element method

被引:9
|
作者
Abbassi, H
Turki, S
Ben Nasrallah, S
机构
[1] Fac Sci Tunis, Dept Phys, Sfax 3018, Tunisia
[2] Ecole Natl Ingn, Dept Energet, Monastir 5000, Tunisia
关键词
control volume finite element method; incompressible fluid flow; interpolation function; flow-oriented interpolation; laminar flow;
D O I
10.1007/s00466-002-0406-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main contribution of this paper is the study of interpolation functions in control volume finite element method used in equal order and applied to an incompressible two-dimensional fluid flow. Especially, the exponential interpolation function expressed in the elemental local coordinate system is compared to the classic linear interpolation function expressed in the global coordinate system. A quantitative comparison is achieved by the application of these two schemes to four flows that we know the analytical solutions. These flows are classified in two groups: flows with privileged direction and flows without. The two interpolation functions are applied to a triangular element of the domain then; a direct comparison of the results given by each interpolation function to the exact value is easily realized. The two functions are also compared when used to solve the discretized equations over the entire domain. Stability of the numerical process and accuracy of solutions are compared.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 50 条
  • [41] Construction of Multivariate Interpolation Hermite Polynomials for Finite Element Method
    Chuluunbaatar, Galmandakh
    Gusev, Alexander A.
    Chuluunbaatar, Ochbadrakh
    Gerdt, Vladimir P.
    Vinitsky, Sergue, I
    Derbov, Vladimir L.
    Gozdz, Andrzej
    Krassovitskiy, Pavel M.
    Luong Le Hai
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2019 (MMCP 2019), 2020, 226
  • [42] Integration scheme of Wachspress interpolation polygonal finite element method
    Ding, Shengyong
    Shao, Guojian
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2013, 43 (01): : 216 - 220
  • [43] GENERAL METHOD OF DETERMINATION OF FINITE ELEMENT INTERPOLATION POLYNOMIALS.
    Kreisinger, Vladimir
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 1983, 28 (02): : 173 - 205
  • [44] On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model
    Ibrahim, Moustafa
    Saad, Mazen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (09) : 1032 - 1051
  • [45] APPLICATION OF HERMITIAN INTERPOLATION POLYNOMIALS TO FINITE-ELEMENT METHOD
    SCHMIEDER, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (05): : T149 - T151
  • [46] SPLINE FUNCTIONS AND FINITE-ELEMENT METHOD
    ATTEIA, M
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1975, 9 (NR2): : 13 - 40
  • [47] A finite element method with composite shape functions
    Sadeghirad, Alireza
    Astaneh, Ali Vaziri
    ENGINEERING COMPUTATIONS, 2011, 28 (3-4) : 389 - 422
  • [48] Smoothness of Functions in Spaces of the Finite Element Method
    Dem’yanovich Y.K.
    Prozorova E.V.
    Journal of Mathematical Sciences, 2018, 235 (3) : 262 - 274
  • [49] On enrichment functions in the extended finite element method
    Zhu, Qi-Zhi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (02) : 186 - 217
  • [50] Convergence of the Finite Element Method with Holomorphic Functions
    Bock, S.
    Guerlebeck, K.
    Legatiuk, D.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 513 - 516