Performance of supplementary cementitious materials in concrete resistivity and corrosion monitoring evaluations

被引:1
|
作者
Smith, KM [1 ]
Schokker, AJ
Tikalsky, PJ
机构
[1] Baldridge & Associates Struct Engn, Honolulu, HI USA
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
corrosion; durability; fly ash; high-performance concrete; resistance; slag;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A testing regime was established to optimize the strengths and durability characteristics of a wide range of high-performance concrete mixtures. The intent of the selected designs was to present multiple solutions for creating a highly durable and effective structural material that would be implemented on Pennsylvania bridge decks, with a life expectancy of 75 to 100 years. One of the prime methods for optimizing the mixtures was to implement supplemental cementitious materials, at their most advantageous levels. Fly ash, slag cement, and microsilica all proved to be highly effective in creating more durable concrete design mixtures. These materials have also shown success in substantially lowering chloride ingress, thus extending the initiation phase of corrosion. An additional benefit studied in this program is the ability of these materials to extend the propagation phase of corrosion due to the high resistivity they impart to the concrete. Ternary mixtures from these materials were particularly effective, showing much higher resistivity values than the materials used separately.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [41] Designing Reinforced Concrete Beams Containing Supplementary Cementitious Materials
    Fantilli, Alessandro P.
    Tondolo, Francesco
    Chiaia, Bernardino
    Habert, Guillaume
    MATERIALS, 2019, 12 (08):
  • [42] Influence of supplementary cementitious materials on ITZ characteristics of recycled concrete
    Gao, Song
    Guo, Xin
    Ban, Shunli
    Ma, Yanxuan
    Yu, Qi
    Sui, Shiyu
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 363
  • [43] A Comparative Study on the Influence of Supplementary Cementitious Materials on Marine Concrete
    Li, Xiaosheng
    Shui, Zhonghe
    Huang, Yun
    Gao, Xu
    Chen, Jie
    JOURNAL OF TESTING AND EVALUATION, 2020, 48 (03) : 1777 - 1787
  • [44] Supplementary Cementitious Materials Reactivity: From Model Systems to Concrete
    Suraneni, Prannoy
    PROCEEDINGS OF THE 75TH RILEM ANNUAL WEEK 2021, 2023, 40 : 131 - 140
  • [45] Durability of concrete made with manganese slag as supplementary cementitious materials
    Rong-Jin L.
    Qing-Jun D.
    Ping C.
    Guang-Yao Y.
    Journal of Shanghai Jiaotong University (Science), 2012, 17 (3) : 345 - 349
  • [46] Assessing the effects of supplementary cementitious materials on concrete properties:a review
    Almotaseembillah Ahmed
    Discover Civil Engineering, 1 (1):
  • [47] Environmental assessment of supplementary cementitious materials and engineered nanomaterials concrete
    Lovecchio, Nicola
    Shaikh, Faiz
    Rosano, Michele
    Ceravolo, Rosario
    Biswas, Wahidul
    AIMS ENVIRONMENTAL SCIENCE, 2020, 7 (01) : 13 - 30
  • [48] Accelerated mix proportioning of concrete incorporated with supplementary cementitious materials
    Chaitanya, A.
    Rao, B. Kameswara
    Madhuri, P. V.
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 5117 - 5120
  • [49] Influence of supplementary cementitious materials on strength and durability characteristics of concrete
    Kumar, V. V. Praveen
    Prasad, D. Ravi
    ADVANCES IN CONCRETE CONSTRUCTION, 2019, 7 (02) : 75 - 85