On a generalization complexity measure for Boolean functions

被引:0
|
作者
Franco, L [1 ]
Anthony, M [1 ]
机构
[1] Univ Oxford, Dept Expt Psychol, Oxford OX1 3UD, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We analyze Boolean functions using a recently proposed measure of their complexity. This complexity measure, motivated by the aim of relating the complexity of the functions with the generalization ability that can be obtained when the functions are implemented in feed-forward neural networks, is the sum of two components. The first of these is related to the,average sensitivity' of the function and the second is, in a sense, a measure of the 'randomness' or lack of structure of the function. In this paper, we investigate the importance of using the second term in the complexity measure. We also explore the existence of very complex Boolean functions, considering, in particular, the symmetric Boolean functions.
引用
收藏
页码:973 / 978
页数:6
相关论文
共 50 条