Absolute Continuity of Wasserstein Barycenters Over Alexandrov Spaces

被引:1
|
作者
Jiang, Yin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Alexandrov space; Wasserstein barycenter; multi-marginal optimal transport; OPTIMAL MAPS; TRANSPORTATION; UNIQUENESS;
D O I
10.4153/CJM-2016-035-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that on a compact, n-dimensional Alexandrov space with curvature at least 1, the Wasserstein barycenter of Borel probability measures mu(1) ...mu(m), pm is absolutely continuous with respect to the n-dimensional Hausdorff measure if one of them is.
引用
收藏
页码:1087 / 1108
页数:22
相关论文
共 50 条
  • [41] Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters
    Dvurechensky, Pavel
    Dvinskikh, Darina
    Gasnikov, Alexander
    Uribe, Cesar A.
    Nedic, Angelia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [42] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43
  • [43] Distributed Wasserstein Barycenters via Displacement Interpolation
    Cisneros-Velarde, Pedro
    Bullo, Francesco
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02): : 785 - 795
  • [44] ABSOLUTE CONTINUITY FOR ABSTRACT WIENER SPACES
    DUNCAN, TE
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 52 (02) : 359 - 367
  • [45] NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS
    Carlier, Guillaume
    Oberman, Adam
    Oudet, Edouard
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06): : 1621 - 1642
  • [46] Computing Wasserstein Barycenters via Linear Programming
    Auricchio, Gennaro
    Bassetti, Federico
    Gualandi, Stefano
    Veneroni, Marco
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2019, 2019, 11494 : 355 - 363
  • [47] LIPSCHITZ CONTINUITY OF MINIMIZERS FOR THE GINZBURG-LANDAU FUNCTIONAL BETWEEN ALEXANDROV SPACES
    Jia-Cheng Huang
    Hui-Chun Zhang
    Annals of Applied Mathematics, 2019, 35 (03) : 266 - 308
  • [48] A fixed-point approach to barycenters in Wasserstein space
    Alvarez-Esteban, Pedro C.
    del Barrio, E.
    Cuesta-Albertos, J. A.
    Matran, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 744 - 762
  • [49] ESTIMATES ON PATH FUNCTIONALS OVER WASSERSTEIN SPACES
    Bianchini, S.
    Brancolini, A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (03) : 1179 - 1217
  • [50] Discrete Wasserstein barycenters: optimal transport for discrete data
    Ethan Anderes
    Steffen Borgwardt
    Jacob Miller
    Mathematical Methods of Operations Research, 2016, 84 : 389 - 409