Constrained Clustering Problems: New Optimization Algorithms

被引:0
|
作者
Ibn-Khedher, Hatem [1 ]
Hadji, Makhlouf [2 ]
Ibn Khedher, Mohamed [2 ]
Khebbache, Selma [2 ]
机构
[1] ALTRAN Labs, F-78140 Velizy Villacoublay, France
[2] Inst Rech Technol SystemX, 8 Ave Vauve, F-91120 Palaiseau, France
关键词
Constrained-clustering; K-Means; Combinatorial optimization;
D O I
10.1007/978-3-030-87897-9_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Constrained clustering problems are often considered in massive data clustering and analysis. They are used in modeling various issues in anomaly detection, classification, systems' misbehaviour, etc. In this paper, we focus on generalizing the K-Means clustering approach when involving linear constraints on the clusters' size. Indeed, to avoid local optimum clustering solutions which consists in empty clusters or clusters with few points, we propose linear integer programming approaches based on relaxation and rounding techniques to cope with scalability issues. We show the efficiency of the new proposed approach, and assess its performance using five data-sets from different domains.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 50 条
  • [21] NEW SIMULATED ANNEALING ALGORITHMS FOR CONSTRAINED OPTIMIZATION
    Ozdamar, Linet
    Pedamallu, Chandra Sekhar
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2010, 27 (03) : 347 - 367
  • [22] NOTE ON NEW ALGORITHMS FOR CONSTRAINED MINIMAX OPTIMIZATION
    COLEMAN, TF
    MATHEMATICAL PROGRAMMING, 1978, 15 (02) : 239 - 242
  • [23] Extensions of a Multistart Clustering Algorithm for Constrained Global Optimization Problems
    Sendin, Jose-Oscar H.
    Banga, Julio R.
    Csendes, Tibor
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (06) : 3014 - 3023
  • [24] Hybrid parallel evolutionary algorithms for constrained optimization utilizing PC clustering
    Lee, CH
    Park, KH
    Kim, JH
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 1436 - 1441
  • [25] Constrained Optimization Problems Solving using Evolutionary Algorithms: A Review
    Sheth, P. D.
    Umbarkar, A. J.
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 1251 - 1257
  • [26] An enhanced discrete bees algorithms for resource constrained optimization problems
    Nemmich M.A.
    Debbat F.
    Slimane M.
    Inteligencia Artificial, 2019, 22 (64): : 123 - 134
  • [27] Boundary search for constrained numerical optimization problems in ACO algorithms
    Leguizamon, Guillermo
    Coello Coello, Carlos A.
    ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE, PROCEEDINGS, 2006, 4150 : 108 - 119
  • [28] An Enhanced Discrete Bees Algorithms for Resource Constrained Optimization Problems
    Nemmich, Mohamed Amine
    Debbat, Fatima
    Slimane, Mohamed
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2019, 22 (64): : 123 - 134
  • [29] Accelerated Projected Gradient Algorithms for Sparsity Constrained Optimization Problems
    Alcantara, Jan Harold
    Lee, Ching-pei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [30] Addressing Constrained Sampling Optimization Problems Using Evolutionary Algorithms
    Caamano, Pilar
    Varela, Gervasio
    Duro, Richard J.
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 390 - 400