MAP estimation for hidden discrete Markov random fields

被引:1
|
作者
Elliott, RJ
Aggoun, L
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Auckland, Dept Stat, Auckland 1, New Zealand
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1080/07362999808809518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite state Markov random field on a lattice is noisily observed via a second finite state process. The problem of estimating the most likely signal given the observations is treated in a relaxed form by introducing probabilities over the possible signals.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [41] Consistent estimation of the basic neighborhood of Markov random fields
    Csiszár, I
    Talata, Z
    ANNALS OF STATISTICS, 2006, 34 (01): : 123 - 145
  • [42] ON THE ESTIMATION OF NOISY BINARY MARKOV RANDOM-FIELDS
    GRAY, AJ
    KAY, JW
    TITTERINGTON, DM
    PATTERN RECOGNITION, 1992, 25 (07) : 749 - 768
  • [43] Markov Chain Random Fields for Estimation of Categorical Variables
    Weidong Li
    Mathematical Geology, 2007, 39 : 321 - 335
  • [44] Markov chain random fields for estimation of categorical variables
    Li, Weidong
    MATHEMATICAL GEOLOGY, 2007, 39 (03): : 321 - 335
  • [45] Transformation of Markov Random Fields for Marginal Distribution Estimation
    Saito, Masaki
    Okatani, Takayuki
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 797 - 805
  • [46] A Convex Discrete-Continuous Approach for Markov Random Fields
    Zach, Christopher
    Kohli, Pushmeet
    COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 386 - 399
  • [47] A SIMULATION-BASED ESTIMATOR FOR HIDDEN MARKOV RANDOM-FIELDS
    VEIJANEN, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (08) : 825 - 830
  • [48] Decision-theoretic Optimal Sampling in Hidden Markov Random Fields
    Peyrard, N.
    Sabbadin, R.
    Niaz, U. Farrokh
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 687 - 692
  • [49] Modelling Nonstationary Spatial Lag Models with Hidden Markov Random Fields
    Ghiringhelli, C.
    Bartolucci, F.
    Mira, A.
    Arbia, G.
    SPATIAL STATISTICS, 2021, 44
  • [50] Convergence of Markovian stochastic approximation for Markov random fields with hidden variables
    Qi, Anna
    Yang, Lihua
    Huang, Chao
    STOCHASTICS AND DYNAMICS, 2020, 20 (05)