Finite-size scaling in anisotropic systems

被引:10
|
作者
Tonchev, N. S. [1 ]
机构
[1] Bulgarian Acad Sci, G Nadjakov Inst Solid State Phys, Sofia 1784, Bulgaria
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 03期
关键词
D O I
10.1103/PhysRevE.75.031110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present analytical results for the finite-size scaling in d-dimensional O(N) systems with strong anisotropy where the critical exponents (e.g., nu(parallel to) and nu(perpendicular to)) depend on the direction. Prominent examples are systems with long-range interactions, decaying with the interparticle distance r as r(-d-sigma) with different exponents sigma in corresponding spatial directions, systems with space-"time" anisotropy near a quantum critical point, and systems with Lifshitz points. The anisotropic properties involve also the geometry of the systems. We consider O(N) systems in the N ->infinity limit, confined to a d-dimensional layer with geometry L(m)x infinity(n);m+n=d and periodic boundary conditions across the finite m dimensions. The arising difficulties are avoided using a technique of calculations based on the analytical properties of the generalized Mittag-Leffler functions.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [32] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [33] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [34] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [35] MAGNETIZATIONS FROM FINITE-SIZE SCALING
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L675 - L683
  • [36] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [37] Finite-size scaling in complex networks
    Hong, Hyunsuk
    Ha, Meesoon
    Park, Hyunggyu
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [38] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667
  • [39] Disorder averaging and finite-size scaling
    Bernardet, K
    Pázmándi, F
    Batrouni, GG
    PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4477 - 4480
  • [40] ORDER PARAMETER AND FINITE-SIZE SCALING
    TAKANO, H
    SAITO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06): : 1369 - 1376