An Eshelby inclusion of parabolic shape in an anisotropic elastic plane

被引:3
|
作者
Yang, Ping [1 ]
Wang, Xu [1 ]
Schiavone, Peter [2 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Univ Alberta, Dept Mech Engn, 10-203 Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Parabolic inclusion; Anisotropic elastic material; Stroh sextic formalism; Uniform field; Eshelby's tensor; ARBITRARY SHAPE; FIELD;
D O I
10.1016/j.mechmat.2020.103733
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analytical solution is derived to the Eshelby's problem of a parabolic inclusion undergoing uniform in-plane and anti-plane eigenstrains in an anisotropic elastic plane. The stresses, total strains and rigid-body rotation are found to be uniform inside the parabolic inclusion. In addition, we obtain real-form expressions of these internal uniform physical quantities in terms of the reduced elastic compliances and the imposed eigenstrains. The constant Eshelby's tensor inside the parabolic inclusion can be completely determined by the reduced elastic compliances.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A parabolic equation for anisotropic elastic media
    Fredricks, AJ
    Siegmann, WL
    Collins, MD
    WAVE MOTION, 2000, 31 (02) : 139 - 146
  • [42] Plane problem for a piecewise-homogeneous anisotropic body with elastic inclusion in the form of a strip
    H. T. Sulym
    S. P. Shevchuk
    Materials Science, 1999, 35 : 757 - 769
  • [43] A circular Eshelby inclusion with linear eigenstrains interacting with a coated non-parabolic inhomogeneity with internal uniform anti-plane stresses
    Wang, Xu
    Yang, Ping
    Schiavone, Peter
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 87
  • [44] On the Displacement of a Two-Dimensional Eshelby Inclusion of Elliptic Cylindrical Shape
    Jin, Xiaoqing
    Zhang, Xiangning
    Li, Pu
    Xu, Zheng
    Hu, Yumei
    Keer, Leon M.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2017, 84 (07):
  • [45] ANALYTICAL SOLUTION FOR THE STRESS FIELD OF ESHELBY'S INCLUSION OF POLYGONAL SHAPE
    Jin, Xiaoqing
    Keer, Leon M.
    Wang, Qian
    PROCEEDINGS OF THE ASME/STLE INTERNATIONAL JOINT TRIBOLOGY CONFERENCE - 2009, 2010, : 487 - 489
  • [46] GREEN'S FUNCTIONS FOR AN ANISOTROPIC ELASTIC PARABOLIC INHOMOGENEITY UNDER GENERALISED PLANE STRAIN DEFORMATIONS
    Wang, X.
    Schiavone, P.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2021, 74 (03): : 351 - 366
  • [47] Eshelby problem of an arbitrary polygonal inclusion in anisotropic piezoelectric media with quadratic eigenstrains
    Yue, Y. M.
    Xu, K. Y.
    Chen, Q. D.
    Pan, E.
    ACTA MECHANICA, 2015, 226 (07) : 2365 - 2378
  • [48] Eshelby problem of an arbitrary polygonal inclusion in anisotropic piezoelectric media with quadratic eigenstrains
    Y. M. Yue
    K. Y. Xu
    Q. D. Chen
    E. Pan
    Acta Mechanica, 2015, 226 : 2365 - 2378
  • [49] STRAIN GRADIENT SOLUTION FOR THE ESHELBY-TYPE PROBLEM OF AN ANTI-PLANE STRAIN CYLINDRICAL INCLUSION IN A FINITE ELASTIC MATRIX
    Ma, H. M.
    Gao, X. L.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2011, 2011, : 992 - +
  • [50] ON AN ELLIPTIC ELASTIC INCLUSION IN AN ANISOTROPIC MEDIUM
    CHEN, WT
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1967, 20 : 307 - &