An Eshelby inclusion of parabolic shape in an anisotropic elastic plane

被引:3
|
作者
Yang, Ping [1 ]
Wang, Xu [1 ]
Schiavone, Peter [2 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Univ Alberta, Dept Mech Engn, 10-203 Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Parabolic inclusion; Anisotropic elastic material; Stroh sextic formalism; Uniform field; Eshelby's tensor; ARBITRARY SHAPE; FIELD;
D O I
10.1016/j.mechmat.2020.103733
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analytical solution is derived to the Eshelby's problem of a parabolic inclusion undergoing uniform in-plane and anti-plane eigenstrains in an anisotropic elastic plane. The stresses, total strains and rigid-body rotation are found to be uniform inside the parabolic inclusion. In addition, we obtain real-form expressions of these internal uniform physical quantities in terms of the reduced elastic compliances and the imposed eigenstrains. The constant Eshelby's tensor inside the parabolic inclusion can be completely determined by the reduced elastic compliances.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane
    Ru, CQ
    ACTA MECHANICA, 2003, 160 (3-4) : 219 - 234
  • [2] Comments on “Eshelby inclusion of arbitrary shape in an anisotropic plane or half–plane”
    P. A. A. Laura
    D. V. Bambill
    Acta Mechanica, 2003, 164 : 113 - 114
  • [3] Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane
    C. Q. Ru
    Acta Mechanica, 2003, 160 : 219 - 234
  • [4] An Eshelby inclusion of parabolic shape in a Kirchhoff laminated anisotropic thin plate
    Yang, Ping
    Wang, Xu
    Schiavone, Peter
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [5] An Eshelby inclusion of parabolic shape in a Kirchhoff laminated anisotropic thin plate
    Ping Yang
    Xu Wang
    Peter Schiavone
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [6] ESHELBY INCLUSION OF ARBITRARY SHAPE IN ISOTROPIC ELASTIC MATERIALS WITH A PARABOLIC BOUNDARY
    Wang, Xu
    Chen, Liang
    Schiavone, Peter
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2018, 13 (02) : 191 - 202
  • [7] Eshelby's problem problem of inclusion with arbitrary shape in an isotropic elastic half-plane
    Lee, Y. -G.
    Zou, W. -N.
    Ren, H. -H.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 81 : 399 - 410
  • [8] Proof of the Strong Eshelby Conjecture for Plane and Anti-plane Anisotropic Inclusion Problems
    Xu, Bai-Xiang
    Zhao, Ying-Tao
    Gross, Dietmar
    Wang, Min-Zhong
    JOURNAL OF ELASTICITY, 2009, 97 (02) : 173 - 188
  • [9] Proof of the Strong Eshelby Conjecture for Plane and Anti-plane Anisotropic Inclusion Problems
    Bai-Xiang Xu
    Ying-Tao Zhao
    Dietmar Gross
    Min-Zhong Wang
    Journal of Elasticity, 2009, 97 : 173 - 188
  • [10] Eshelby's formula for an ellipsoidal elastic inclusion in anisotropic poroelasticity and thermoelasticity
    Levin, VM
    Alvarez-Tostado, JM
    INTERNATIONAL JOURNAL OF FRACTURE, 2003, 119 (4-2) : L79 - L82