The Hajek-Renyi-Chow maximal inequality and a strong law of large numbers in Riesz spaces
被引:2
|
作者:
Kuo, Wen-Chi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
Kuo, Wen-Chi
[1
]
Rodda, David F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
Rodda, David F.
[1
]
Watson, Bruce A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
Watson, Bruce A.
[1
]
机构:
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
Riesz spaces;
Vector lattices;
Maximal inequality;
Clarkson's inequality;
Submartingale convergence;
Strong law of large numbers;
CONVERGENCE;
D O I:
10.1016/j.jmaa.2019.123462
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we generalize the Hajek-Renyi-Chow maximal inequality for submartingales to L-P type Riesz spaces with conditional expectation operators. As applications we obtain a submartingale convergence theorem and a strong law of large numbers in Riesz spaces. Along the way we develop a Riesz space variant of the Clarkson's inequality for 1 <= p <= 2. (C) 2019 Elsevier Inc. All rights reserved.