Cross the Chasm: Scalable Privacy-Preserving Federated Learning against Poisoning Attack

被引:1
|
作者
Li, Yiran [1 ]
Hu, Guiqiang [2 ]
Liu, Xiaoyuan [1 ]
Ying, Zuobin [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[2] Chongqing Univ Arts & Sci, Sch Artificial Intelligence, Chongqing, Peoples R China
[3] City Univ Macau, Fac Data Sci, Macau, Peoples R China
关键词
Privacy protection; Security; Federated learning; Poisoning attack;
D O I
10.1109/PST52912.2021.9647750
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Privacy protection and defense against poisoning attack and are two critical problems hindering the proliferation of federated learning (FL). However, they are two inherently contrary issues. For constructing a privacy-preserving FL, solutions tend to transform the original information (e.g., gradient information) to be indistinguishable. Nevertheless, to defend against poisoning attacks is required to identify the abnormal information via the distinguishability. Therefore, it is really a challenge to handle these two issues simultaneously under a unified framework. In this paper, we build a bridge between them, proposing a scalable privacy-preserving federated learning (SPPFL) against poisoning attacks. To be specific, based on the the technology of secure multi-party computation (MPC), we construct a secure framework to protect users' privacy during the training process, while punishing poisoners via the method of distance evaluation. Besides, we implement extensive experiments to illustrate the performance of our scheme.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Feng, Zhanshen
    Zhu, Guanghui
    Tian, Zhihong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3918 - 3934
  • [32] Efficient Privacy-Preserving Federated Learning Against Inference Attacks for IoT
    Miao, Yifeng
    Chen, Siguang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [33] Privacy-preserving Cross-domain Recommendation with Federated Graph Learning
    Tian, Changxin
    Xie, Yuexiang
    Chen, Xu
    Li, Yaliang
    Zhao, Xin
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [34] Anonymous and Efficient Authentication Scheme for Privacy-Preserving Federated Cross Learning
    Li, Zeshuai
    Liang, Xiaoyan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IX, ICIC 2024, 2024, 14870 : 281 - 293
  • [35] Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
    Tran, Van-Tuan
    Pham, Huy-Hieu
    Wong, Kok-Seng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2024, 12 (04) : 1014 - 1024
  • [36] Federated Deep Learning for Scalable and Privacy-Preserving Distributed Denial-of-Service Attack Detection in Internet of Things Networks
    Alshdadi, Abdulrahman A.
    Almazroi, Abdulwahab Ali
    Ayub, Nasir
    Lytras, Miltiadis D.
    Alsolami, Eesa
    Alsubaei, Faisal S.
    Alharbey, Riad
    FUTURE INTERNET, 2025, 17 (02)
  • [37] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891
  • [38] Privacy-preserving federated learning on lattice quantization
    Zhang, Lingjie
    Zhang, Hai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)
  • [39] Privacy-preserving Heterogeneous Federated Transfer Learning
    Gao, Dashan
    Liu, Yang
    Huang, Anbu
    Ju, Ce
    Yu, Han
    Yang, Qiang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2552 - 2559
  • [40] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356