Gabor wavelet-based deep learning for skin lesion classification

被引:67
|
作者
Serte, Sertan [1 ]
Demirel, Hasan [2 ]
机构
[1] Near East Univ, Elect & Elect Engn, Via Mersin 10, Nicosia, North Cyprus, Turkey
[2] Eastern Mediterranean Univ, Elect & Elect Engn, Via Mersin 10, Famagusta, North Cyprus, Turkey
关键词
Convolutional neural networks; Gabor wavelets; Model fusion;
D O I
10.1016/j.compbiomed.2019.103423
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Skin cancer cases are increasing and becoming one of the main problems worldwide. Skin cancer is known as a malignant type of skin lesion, and early detection and treatment are necessary. Malignant melanoma and seborrheic keratosis are known as common skin lesion types. A fast and accurate medical diagnosis of these lesions is crucial. In this study, a novel Gabor wavelet-based deep convolutional neural network is proposed for the detection of malignant melanoma and seborrheic keratosis. The proposed method is based on the decomposition of input images into seven directional sub-bands. Seven sub-band images and the input image are used as inputs to eight parallel CNNs to generate eight probabilistic predictions. Decision fusion based on the sum rule is utilized to classify the skin lesion. Gabor based approach provides directional decomposition where each sub-band gives isolated decisions that can be fused for improved overall performance. The results show that the proposed method outperforms alternative methods in the literature developed for skin cancer detection.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] The Performance of Deep and Conventional Machine Learning Techniques for Skin Lesion Classification
    Shahabi, Farzad
    Rouhi, Amirreza
    Rastegari, Reza
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON SMART COMMUNITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEE HONET 2021), 2021, : 50 - 55
  • [32] Deep Ensemble Learning for Skin Lesion Classification from Dermoscopic Images
    Shahin, Ahmed H.
    Kamal, Ahmed
    Elattar, Mustafa A.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 150 - 153
  • [33] Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation
    Pandurangan, Visu
    Sarojam, Smitha Ponnayyan
    Narayanan, Pughazendi
    Velayutham, Murugananthan
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2024,
  • [34] Deep metric attention learning for skin lesion classification in dermoscopy images
    Xiaoyu He
    Yong Wang
    Shuang Zhao
    Chunli Yao
    Complex & Intelligent Systems, 2022, 8 : 1487 - 1504
  • [35] A Wavelet-Based Compressive Deep Learning Scheme for Inverse Scattering Problems
    Zong, Zheng
    Wang, Yusong
    Wei, Zhun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Seismic Data Reconstruction via Wavelet-Based Residual Deep Learning
    Liu, Naihao
    Wu, Lukun
    Wang, Jiale
    Wu, Hao
    Gao, Jinghuai
    Wang, Dehua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Deep Learning-Based Dermoscopic Image Classification System for Robust Skin Lesion Analysis
    Thamizhamuthu, Rajamanickam
    Maniraj, Subramanian Pitchiah
    TRAITEMENT DU SIGNAL, 2023, 40 (03) : 1145 - 1152
  • [38] Retraction Note: Deep learning based an automated skin lesion segmentation and intelligent classification model
    Mohamed Yacin Sikkandar
    Bader Awadh Alrasheadi
    N. B. Prakash
    G. R. Hemalakshmi
    A. Mohanarathinam
    K. Shankar
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (Suppl 1) : 225 - 225
  • [39] Wavelet-based extended morphological profile and deep autoencoder for hyperspectral image classification
    Luo, Huiwu
    Tani, Yuan Yan
    Biuk-Aghai, Robert P.
    Yang, Xu
    Yang, Lina
    Wang, Yi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (03)
  • [40] Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review
    Kassem, Mohamed A.
    Hosny, Khalid M.
    Damasevicius, Robertas
    Eltoukhy, Mohamed Meselhy
    DIAGNOSTICS, 2021, 11 (08)