A note on the Neumann problem for a quasilinear elliptic problem of a nonmonotone type

被引:7
|
作者
Hlavacek, I [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
D O I
10.1006/jmaa.1997.5447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and uniqueness of a weak solution of a Neumann problem is discussed for a second-order quasilinear elliptic equation in a divergence form. The note is a continuation of a recent paper, where mixed boundary value problems were considered, which guaranteed the coerciveness of the problem. (C) 1997 Academic Press.
引用
收藏
页码:365 / 369
页数:5
相关论文
共 50 条
  • [31] An Inverse Problem for Quasilinear Elliptic Equations
    Aliev, R. A.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2011, 11 (01): : 3 - 9
  • [32] The Calderon problem for quasilinear elliptic equations
    Munoz, Claudio
    Uhlmann, Gunther
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05): : 1143 - 1166
  • [33] On a quasilinear elliptic eigenvalue problem with constraint
    Chen, JQ
    Chen, SW
    Li, YQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (04): : 523 - 537
  • [34] An Inverse Problem for a Quasilinear Elliptic Equation
    Lyubanova A.S.
    Velisevich A.V.
    Journal of Mathematical Sciences, 2023, 270 (4) : 591 - 599
  • [35] THE GRADIENT SUPERCONVERGENCE OF THE FINITE VOLUME METHOD FOR A NONLINEAR ELLIPTIC PROBLEM OF NONMONOTONE TYPE
    Zhang, Tie
    Zhang, Shuhua
    APPLICATIONS OF MATHEMATICS, 2015, 60 (05) : 573 - 596
  • [36] On a quasilinear elliptic eigenvalue problem with constraint
    CHEN Jianqing
    Institute of Mathematics
    Science China Mathematics, 2004, (04) : 523 - 537
  • [37] THE EIGENVALUE PROBLEM OF QUASILINEAR ELLIPTIC EQUATION
    张正杰
    Acta Mathematica Scientia, 1991, (01) : 83 - 94
  • [38] On a quasilinear elliptic eigenvalue problem with constraint
    Jianqing Chen
    Shaowei Chen
    Yongqing Li
    Science in China Series A: Mathematics, 2004, 47 : 523 - 537
  • [39] The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type
    Tie Zhang
    Shuhua Zhang
    Applications of Mathematics, 2015, 60 : 573 - 596
  • [40] ON GALERKIN APPROXIMATIONS OF A QUASI-LINEAR NONPOTENTIAL ELLIPTIC PROBLEM OF A NONMONOTONE TYPE
    HLAVACEK, I
    KRIZEK, M
    MALY, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (01) : 168 - 189