Estimation for hidden Markov random fields

被引:1
|
作者
Elliott, RJ
Aggoun, L
机构
[1] UNIV ALBERTA,DEPT MATH SCI,EDMONTON,AB T6G 2G1,CANADA
[2] UNIV AUCKLAND,DEPT STAT,AUCKLAND,NEW ZEALAND
关键词
Random field; noisy observation; parameter estimation;
D O I
10.1016/0378-3758(95)00062-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A finite state Markov random field is noisily observed via a second finite state process. The parameters of the model are estimated, as well as the most likely signal given the observations.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [31] Markov Chain Random Fields for Estimation of Categorical Variables
    Weidong Li
    Mathematical Geology, 2007, 39 : 321 - 335
  • [32] Markov chain random fields for estimation of categorical variables
    Li, Weidong
    MATHEMATICAL GEOLOGY, 2007, 39 (03): : 321 - 335
  • [33] Transformation of Markov Random Fields for Marginal Distribution Estimation
    Saito, Masaki
    Okatani, Takayuki
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 797 - 805
  • [34] A SIMULATION-BASED ESTIMATOR FOR HIDDEN MARKOV RANDOM-FIELDS
    VEIJANEN, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (08) : 825 - 830
  • [35] Decision-theoretic Optimal Sampling in Hidden Markov Random Fields
    Peyrard, N.
    Sabbadin, R.
    Niaz, U. Farrokh
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 687 - 692
  • [36] Modelling Nonstationary Spatial Lag Models with Hidden Markov Random Fields
    Ghiringhelli, C.
    Bartolucci, F.
    Mira, A.
    Arbia, G.
    SPATIAL STATISTICS, 2021, 44
  • [37] Convergence of Markovian stochastic approximation for Markov random fields with hidden variables
    Qi, Anna
    Yang, Lihua
    Huang, Chao
    STOCHASTICS AND DYNAMICS, 2020, 20 (05)
  • [38] Colonoscopy Video Quality Assessment using Hidden Markov Random Fields
    Park, Sun Young
    Sargent, Dusty
    Spofford, Inbar
    Vosburgh, Kirby
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [39] Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields
    Wu, H.
    Noe, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1659 - 1667
  • [40] Joint semi-supervised learning of Hidden Conditional Random Fields and Hidden Markov Models
    Soullard, Yann
    Saveski, Martin
    Artieres, Thierry
    PATTERN RECOGNITION LETTERS, 2014, 37 : 161 - 171