End-to-end Image Compression with Swin-Transformer

被引:1
|
作者
Wang, Meng [1 ]
Zhang, Kai [2 ]
Zhang, Li [2 ]
Li, Yue [2 ]
Li, Junru [3 ]
Wang, Yue [3 ]
Wang, Shiqi [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Bytedance Inc, San Diego, CA 92122 USA
[3] Beijing Bytedance Technol Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Image compression; end-to-end compression; transformer; convolution;
D O I
10.1109/VCIP56404.2022.10008895
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an end-to-end image compression framework, which cooperates with the swin-transformer modules to capture the localized and non-localized similarities in image compression. In particular, the swin-transformer modules are deployed in the analysis and synthesis stages, interleaving with convolution layers. The transformer layers are expected to perceive more flexible receptive fields, such that the spatially localized and non-localized redundancies could be more effectively eliminated. The proposed method reveals the excellent capability of signal conjunction and prediction, leading to the improvement of the rate and distortion performance. Experimental results show that the proposed method is superior to the existing methods on both natural scene and screen content images, where 22.46% BD-Rate savings are achieved when compared with the BPG. Over 30% BD-Rate gains could be observed with screen content images when compared with the classical hyper-prior end-to-end coding method.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] TRELLIS-CODED QUANTIZATION FOR END-TO-END LEARNED IMAGE COMPRESSION
    Suhring, Karsten
    Schafer, Michael
    Pfaff, Jonathan
    Schwarz, Heiko
    Marpe, Detlev
    Wiegand, Thomas
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3306 - 3310
  • [42] END-TO-END LEARNED IMAGE COMPRESSION WITH FIXED POINT WEIGHT QUANTIZATION
    Sun, Heming
    Cheng, Zhengxue
    Takeuchi, Masaru
    Katto, Jiro
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3359 - 3363
  • [43] New Results in End-to-end Image and Video Compression by Deep Learning
    Ozsoy, Gokberk
    Yilmaz, Melih
    Kirmemis, Ogun
    Tekalp, A. Murat
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [44] End-to-end optimized image compression with the frequency-oriented transform
    Zhang, Yuefeng
    Lin, Kai
    MACHINE VISION AND APPLICATIONS, 2024, 35 (02)
  • [45] End-to-End Facial Image Compression with Integrated Semantic Distortion Metric
    He, Tianyu
    Chen, Zhibo
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [46] Image Compression Based on Compressive Sensing: End-to-End Comparison With JPEG
    Yuan, Xin
    Haimi-Cohen, Raziel
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2889 - 2904
  • [47] End-to-End Multispectral Image Compression Using Convolutional Neural Network
    Kong Fanqiang
    Zhou Yongbo
    Shen Qiu
    Wen Keyao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (10):
  • [48] End-to-End Learning-Based Image Compression With a Decoupled Framework
    Zhang, Zhaobin
    Esenlik, Semih
    Wu, Yaojun
    Wang, Meng
    Zhang, Kai
    Zhang, Li
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3067 - 3081
  • [49] CPIPS: Learning to Preserve Perceptual Distances in End-to-End Image Compression
    Huang, Chen-Hsiu
    Wu, Ja-Ling
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1705 - 1711
  • [50] TRANSFORM SKIP INSPIRED END-TO-END COMPRESSION FOR SCREEN CONTENT IMAGE
    Wang, Meng
    Zhang, Kai
    Zhang, Li
    Wu, Yaojun
    Li, Yue
    Li, Junru
    Wang, Shiqi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3848 - 3852