Sparse Simultaneous Recurrent Deep Learning for Robust Facial Expression Recognition

被引:37
|
作者
Alam, Mahbubul [1 ]
Vidyaratne, Lasitha S. [1 ]
Iftekharuddin, Khan M. [1 ]
机构
[1] Old Dominion Univ, Dept Elect & Comp Engn, Vis Lab, Norfolk, VA 23529 USA
基金
美国国家科学基金会;
关键词
Deep feed-forward network; dropout learning; graphical processing unit (GPU) acceleration; metric learning; simultaneous recurrent network (SRN); sparse feature learning; FUSION; MODELS;
D O I
10.1109/TNNLS.2017.2776248
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial expression recognition is a challenging task that involves detection and interpretation of complex and subtle changes in facial muscles. Recent advances in feed-forward deep neural networks (DNNs) have offered improved object recognition performance. Sparse feature learning in feed-forward DNN models offers further improvement in performance when compared to the earlier handcrafted techniques. However, the depth of the feed-forward DNNs and the computational complexity of the models increase proportional to the challenges posed by the facial expression recognition problem. The feed-forward DNN architectures do not exploit another important learning paradigm, known as recurrency, which is ubiquitous in the human visual system. Consequently, this paper proposes a novel biologically relevant sparse-deep simultaneous recurrent network (S-DSRN) for robust facial expression recognition. The feature sparsity is obtained by adopting dropout learning in the proposed DSRN as opposed to usual handcrafting of additional penalty terms for the sparse representation of data. Theoretical analysis of S-DSRN shows that the dropout learning offers desirable properties such as sparsity, and prevents the model from overfitting. Experimental results also suggest that the proposed method yields better performance accuracy, requires reduced number of parameters, and offers reduced computational complexity than that of the previously reported state-of-the-art feed-forward DNNs using two of the most widely used publicly available facial expression data sets. Furthermore, we show that by combining the proposed neural architecture with a state-of-the-art metric learning technique significantly improves the overall recognition performance. Finally, a graphical processing unit (GPU)-based implementation of S-DSRN is obtained for real-time applications.
引用
收藏
页码:4905 / 4916
页数:12
相关论文
共 50 条
  • [41] A facial expression recognition system using robust face features from depth videos and deep learning
    Uddin, Md. Zia
    Hassan, Mohammed Mehedi
    Almogren, Ahmad
    Zuair, Mansour
    Fortino, Giancarlo
    Torresen, Jim
    COMPUTERS & ELECTRICAL ENGINEERING, 2017, 63 : 114 - 125
  • [42] Automated Facial Expression Recognition Framework Using Deep Learning
    Saeed, Saad
    Shah, Asghar Ali
    Ehsan, Muhammad Khurram
    Amirzada, Muhammad Rizwan
    Mahmood, Asad
    Mezgebo, Teweldebrhan
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [43] Deep Neural Networks with Relativity Learning for Facial Expression Recognition
    Guo, Yanan
    Tao, Dapeng
    Yu, Jun
    Xiong, Hao
    Li, Yaotang
    Tao, Dacheng
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2016,
  • [44] Automated Facial Expression Recognition Framework Using Deep Learning
    Saeed, Saad
    Shah, Asghar Ali
    Ehsan, Muhammad Khurram
    Amirzada, Muhammad Rizwan
    Mahmood, Asad
    Mezgebo, Teweldebrhan
    Journal of Healthcare Engineering, 2022, 2022
  • [45] Local Learning With Deep and Handcrafted Features for Facial Expression Recognition
    Georgescu, Mariana-Iuliana
    Ionescu, Radu Tudor
    Popescu, Marius
    IEEE ACCESS, 2019, 7 : 64827 - 64836
  • [46] Facial Expression Recognition System for Stress Detection with Deep Learning
    Almeida, Jose
    Rodrigues, Fatima
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, 2021, : 256 - 263
  • [47] Facial expression recognition using lightweight deep learning modeling
    Ahmad, Mubashir
    Saira
    Alfandi, Omar
    Khattak, Asad Masood
    Qadri, Syed Furqan
    Saeed, Iftikhar Ahmed
    Khan, Salabat
    Hayat, Bashir
    Ahmad, Arshad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 8208 - 8225
  • [48] Facial Expression Recognition using Visual Saliency and Deep Learning
    Mavani, Viraj
    Raman, Shanmuganathan
    Miyapuram, Krishna P.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2783 - 2788
  • [49] Enhancing masked facial expression recognition with multimodal deep learning
    Shahzad, H. M.
    Bhatti, Sohail Masood
    Jaffar, Arfan
    Akram, Sheeraz
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (30) : 73911 - 73921
  • [50] Deep Disturbance-Disentangled Learning for Facial Expression Recognition
    Ruan, Delian
    Yan, Yan
    Chen, Si
    Xue, Jing-Hao
    Wang, Hanzi
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2833 - 2841