Simultaneous lipid biosynthesis and recovery for oleaginous yeast Yarrowia lipolytica

被引:17
|
作者
Pawar, Pratik Prashant [1 ]
Odaneth, Annamma Anil [1 ]
Vadgama, Rajeshkumar Natwarlal [1 ]
Lali, Arvind Mallinath [1 ,2 ]
机构
[1] Inst Chem Technol, DBT ICT Ctr Energy Biosci, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
[2] Inst Chem Technol, Dept Chem Engn, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
关键词
Microbial oil; Yarrowia lipolytica; Continuous production; Oil capturing agent (OCA); Extractive production; INTRACELLULAR LIPIDS; PROCESS OPTIMIZATION; BIOFUEL PRODUCTION; OIL PRODUCTION; MICROBIAL OIL; IN-SITU; ACCUMULATION; ENHANCEMENT; GLUCOSE; BIOMASS;
D O I
10.1186/s13068-019-1576-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (H-eff/C similar to 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields. However, these oleaginous systems cannot compete with the commercial volumes of vegetable oils in terms of overall oil yields and productivities. One of the significant challenges in the commercial exploitation of these microbial oils lies in the inefficient recovery of the produced oil. This issue has been addressed using highly selective oil capturing agents (OCA), which allow a concomitant microbial oil production and in situ oil recovery process. Results Adsorbent-based oil capturing agents were employed for simultaneous in situ oil recovery in the fermentative production broths. Yarrowia lipolytica, a model oleaginous yeast, was milked incessantly for oil production over 380 h in a media comprising of glucose as a sole carbon and nutrient source. This was achieved by continuous online capture of extracellular oil from the aqueous media and also the cell surface, by fluidizing the fermentation broth over an adsorbent bed of oil capturing agents (OCA). A consistent oil yield of 0.33 g per g of glucose consumed, corresponding to theoretical oil yield over glucose, was achieved using this approach. While the incorporation of the OCA increased the oil content up to 89% with complete substrate consumptions, it also caused an overall process integration. Conclusion The nondisruptive oil capture mediated by an OCA helped in accomplishing a trade-off between microbial oil production and its recovery. This strategy helped in realizing theoretically efficient sugar-to-oil bioconversions in a continuous production process. The process, therefore, endorses a sustainable production of molecular drop-in equivalents through oleaginous yeasts, representing as an absolute microbial oil factory.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Control of Lipid Accumulation in the Yeast Yarrowia lipolytica
    Beopoulos, Athanasios
    Mrozova, Zuzana
    Thevenieau, France
    Le Dall, Marie-Therese
    Hapala, Ivan
    Papanikolaou, Seraphim
    Chardot, Thierry
    Nicaud, Jean-Marc
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (24) : 7779 - 7789
  • [32] Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
    A. Beopoulos
    J. Verbeke
    F. Bordes
    M. Guicherd
    M. Bressy
    A. Marty
    Jean-Marc Nicaud
    Applied Microbiology and Biotechnology, 2014, 98 : 251 - 262
  • [33] Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone
    Czajka, Jeffrey J.
    Nathenson, Justin A.
    Benites, Veronica T.
    Baidoo, Edward E. K.
    Cheng, Qianshun
    Wang, Yechun
    Tang, Yinjie J.
    MICROBIAL CELL FACTORIES, 2018, 17
  • [34] Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
    Beopoulos, A.
    Verbeke, J.
    Bordes, F.
    Guicherd, M.
    Bressy, M.
    Marty, A.
    Nicaud, Jean-Marc
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (01) : 251 - 262
  • [35] Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica
    Yu, Aiqun
    Zhao, Yu
    Li, Jian
    Li, Shenglong
    Pang, Yaru
    Zhao, Yakun
    Zhang, Cuiying
    Xiao, Dongguang
    MICROBIOLOGYOPEN, 2020, 9 (07):
  • [36] Transcriptomic Analyses during the Transition from Biomass Production to Lipid Accumulation in the Oleaginous Yeast Yarrowia lipolytica
    Morin, Nicolas
    Cescut, Julien
    Beopoulos, Athanasios
    Lelandais, Gaelle
    Le Berre, Veronique
    Uribelarrea, Jean-Louis
    Molina-Jouve, Carole
    Nicaud, Jean-Marc
    PLOS ONE, 2011, 6 (11):
  • [37] Genome Sequence of the Oleaginous Yeast Yarrowia lipolytica H222
    Devillers, Hugo
    Neuveglise, Cecile
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2019, 8 (04):
  • [38] Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential
    Groenewald, Marizeth
    Boekhout, Teun
    Neuveglise, Cecile
    Gaillardin, Claude
    van Dijck, Piet W. M.
    Wyss, Markus
    CRITICAL REVIEWS IN MICROBIOLOGY, 2014, 40 (03) : 187 - 206
  • [39] Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone
    Jeffrey J. Czajka
    Justin A. Nathenson
    Veronica T. Benites
    Edward E. K. Baidoo
    Qianshun Cheng
    Yechun Wang
    Yinjie J. Tang
    Microbial Cell Factories, 17
  • [40] Reconstruction and In Silico Analysis of Metabolic Network for an Oleaginous Yeast, Yarrowia lipolytica
    Pan, Pengcheng
    Hua, Qiang
    PLOS ONE, 2012, 7 (12):