Quasi-Monte Carlo strategies for stochastic optimization

被引:16
|
作者
Drew, Shane S. [1 ]
Homem-de-Mello, Tito [1 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
D O I
10.1109/WSC.2006.323158
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we discuss the issue of solving stochastic optimization problems using sampling methods. Numerical results have shown that using variance reduction techniques from statistics can result in significant improvements over Monte Carlo sampling in terms of the number of samples needed for convergence of the optimal objective value and optimal solution to a stochastic optimization problem. Among these techniques are stratified sampling and Quasi-Monte Carlo sampling. However, for problems in high dimension, it may be computationally inefficient to calculate Quasi-Monte Carlo point sets in the full dimension. Rather, we wish to identify which dimensions are most important to the convergence and implement a Quasi-Monte Carlo sampling scheme with padding, where the important dimensions are sampled via Quasi-Monte Carlo sampling and the remaining dimensions with Monte Carlo sampling. We then incorporate this sampling scheme into an external sampling algorithm (ES-QMCP) to solve stochastic optimization problems.
引用
收藏
页码:774 / +
页数:3
相关论文
共 50 条
  • [31] Adaptive random search in quasi-Monte Carlo methods for global optimization
    Lei, GY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (6-7) : 747 - 754
  • [32] Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM
    Jank, W
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (04) : 685 - 701
  • [33] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    Numerische Mathematik, 2019, 142 : 863 - 915
  • [34] Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning
    L'Ecuyer, Pierre
    Puchhammer, Florian
    Ben Abdellah, Amal
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1729 - 1748
  • [35] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    Heitsch, H.
    Leoevey, H.
    Roemisch, W.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 567 - 603
  • [36] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915
  • [37] Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?
    H. Heitsch
    H. Leövey
    W. Römisch
    Computational Optimization and Applications, 2016, 65 : 567 - 603
  • [38] RANDOMIZED QUASI-MONTE CARLO FOR QUANTILE ESTIMATION
    Kaplan, Zachary T.
    Li, Yajuan
    Nakayama, Marvin K.
    Tuffin, Bruno
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 428 - 439
  • [39] Discrepancy Theory and Quasi-Monte Carlo Integration
    Dick, Josef
    Pillichshammer, Friedrich
    PANORAMA OF DISCREPANCY THEORY, 2014, 2107 : 539 - 619
  • [40] Rare events, splitting, and quasi-Monte Carlo
    L'Ecuyer, Pierre
    Demers, Valerie
    Tuffin, Bruno
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2007, 17 (02):