On the Number of Rich Words

被引:7
|
作者
Rukavicka, Josef [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12001 2, Czech Republic
来源
关键词
Rich words; Enumeration; Palindromes; Palindromic factorization; LANGUAGES;
D O I
10.1007/978-3-319-62809-7_26
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Any finite word w of length n contains at most n + 1 distinct palindromic factors. If the bound n + 1 is reached, the word w is called rich. The number of rich words of length n over an alphabet of cardinality q is denoted R-q(n). For binary alphabet, Rubinchik and Shur deduced that R-2(n) <= c1.605(n) for some constant c. In addition, Guo, Shallit and Shur conjectured that the number of rich words grows slightly slower than n(root n). We prove that lim (n -> infinity) (n)root R-q(n) = 1 for any q, i.e. R-q(n) has a subexponential growth on any alphabet.
引用
收藏
页码:345 / 352
页数:8
相关论文
共 50 条
  • [41] Abelian-square-rich words
    Fici, Gabriele
    Mignosi, Filippo
    Shallit, Jeffrey
    THEORETICAL COMPUTER SCIENCE, 2017, 684 : 29 - 42
  • [42] Lambda Words: A Class of Rich Words Defined Over an Infinite Alphabet
    Carey, Norman
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (03)
  • [43] Words with the Maximum Number of Abelian Squares
    Fici, Gabriele
    Mignosi, Filippo
    COMBINATORICS ON WORDS, WORDS 2015, 2015, 9304 : 122 - 134
  • [44] The Number of Distinct Subpalindromes in Random Words
    Rubinchik, Mikhail
    Shur, Arseny M.
    FUNDAMENTA INFORMATICAE, 2016, 145 (03) : 371 - 384
  • [45] On the number of repetition-free words
    Kolpakov R.M.
    Journal of Applied and Industrial Mathematics, 2007, 1 (4) : 453 - 462
  • [46] How Spencer made number: First uses of the number words
    Mix, Kelly S.
    JOURNAL OF EXPERIMENTAL CHILD PSYCHOLOGY, 2009, 102 (04) : 427 - 444
  • [47] Sequences with constant number of return words
    Balkova, L'ubomira
    Pelantova, Edita
    Steiner, Wolfgang
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (3-4): : 251 - 263
  • [48] The exact number of squares in Fibonacci words
    Fraenkel, AS
    Simpson, J
    THEORETICAL COMPUTER SCIENCE, 1999, 218 (01) : 95 - 106
  • [49] Upper bound for the number of privileged words
    Rukavicka, Josef
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [50] Sequences with constant number of return words
    L’ubomíra Balková
    Edita Pelantová
    Wolfgang Steiner
    Monatshefte für Mathematik, 2008, 155 : 251 - 263