Creep, fatigue, and creep-fatigue crack growth behaviours of P92 steel at 600 °C

被引:0
|
作者
Alang, N. A. [1 ]
Nikbin, K. [2 ]
机构
[1] Univ Malaysia Pahang, Struct Performance & Mat Engn SUPREME Focus Grp, Fac Mech & Automot Engn Technol, Pahang, Malaysia
[2] Imperial Coll London, Dept Mech Engn, London, England
关键词
Crack; creep; creep-fatigue; fatigue; notch strengthening; frequency; RUPTURE BEHAVIOR; MULTIAXIAL STATE; DUCTILITY; STRESS; TEMPERATURE; FRACTURE; TIME;
D O I
10.3233/SFC-228003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-temperature components in power generation plant are exposed to creep, fatigue, and creep-fatigue environment during service. The components are usually under multiaxial state of stress condition. Understanding how the material behaves under these loading and environment is essential in order to sustain and keep the plant safe. The present paper aims to investigate the creep rupture and crack growth behaviours of P92 steel at 600 degrees C. For creep rupture test, notched bars with two different notch radii were prepared and tested under creep condition between 250 and 3500 hours at 600 degrees C, while the C-shaped specimen was prepared for fatigue and creep-fatigue crack growth tests. The material tested under creep condition showed notch strengthening effect where the life of notched bar specimen increased compared to smooth specimens when the net stress against creep time data was plotted. The effect was more significant as the notch radius decreased. It was also observed that the rupture life of all specimens was von-Mises stress controlled. Based on the fatigue test, it was found that the frequency in a range of 0.1 Hz-10 Hz was insignificantly affecting the crack growth rate. Under creep-fatigue, however, the material showed frequency-dependent behaviour. Observation on the fracture surface revealed that the ductile dimple associated with plasticity was dominant for all creep specimens. In addition, frequency independent specimen was associated with the transgranular fracture, thus flat appearance was evident, while fracture surface of frequency dependent specimen was roughly associated with intergranular fracture.
引用
收藏
页码:29 / 45
页数:17
相关论文
共 50 条
  • [31] The effects of prior creep-fatigue on the strain rate sensitivity of a P92 welded joint
    Song, Yuxuan
    Pan, Zhouxin
    Chen, Jianan
    Qin, Furao
    Gao, Zengliang
    Zhang, Taihua
    Ma, Yi
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (11) : 7111 - 7128
  • [32] Creep-fatigue damage and life prediction in P92 alloy by focused ultrasound measurements
    Kim, Bum-joon
    Kim, Hak-joon
    Lim, Byeong-soo
    METALS AND MATERIALS INTERNATIONAL, 2008, 14 (04) : 391 - 395
  • [33] Crack growth in stainless steel 304 under creep-fatigue loading
    Baik, Y. M.
    Kim, K. S.
    PROGRESSES IN FRACTURE AND STRENGTH OF MATERIALS AND STRUCTURES, 1-4, 2007, 353-358 : 485 - +
  • [34] Short Creep-Fatigue Crack Growth in an Advanced 9 %Cr Steel
    Yan, Wentao
    Holdsworth, Stuart
    Kuhn, Ingo
    Mazza, Edoardo
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2014, 3 (02) : 210 - 228
  • [35] Creep-fatigue damage and life prediction in P92 alloy by focused ultrasound measurements
    Bum-joon Kim
    Hak-joon Kim
    Byeong-soo Lim
    Metals and Materials International, 2008, 14
  • [36] Creep-fatigue crack growth behavior of G115 steel at 650 °C
    Xu, Lianyong
    Rong, Jianying
    Zhao, Lei
    Jing, Hongyang
    Han, Yongdian
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 726 : 179 - 186
  • [37] Creep-fatigue crack growth behavior of 304 stainless steel at 650 degrees C
    Lee, SB
    Kim, JY
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 1996, 24 (02) : 181 - 188
  • [38] Creep Crack Growth in Aged Steam Turbine Casing Casting Steel Creep-Fatigue Interactions
    Singh, K.
    Bose, S. C.
    Chowdary, K. M.
    Radhakrishnan, V. M.
    Transactions of the Indian Institute of Metals, 1996, 49 (04):
  • [39] A creep stress intensity factor approach to creep-fatigue crack growth
    Shlyannikov, V. N.
    Tumanov, A. V.
    Boychenko, N. V.
    ENGINEERING FRACTURE MECHANICS, 2015, 142 : 201 - 219
  • [40] METHODS FOR DETERMINING CREEP DAMAGE AND CREEP-FATIGUE CRACK GROWTH INCUBATION IN AUSTENITIC STAINLESS STEEL
    Webster, George A.
    Dean, David W.
    Spindler, Michael W.
    Smith, N. Godfrey
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 6, PTS A AND B, 2010, : 671 - 683