Intracranial Epileptic Seizures Detection Based on an Optimized Neural Network Classifier

被引:1
|
作者
Gong Chen [1 ,2 ,3 ]
Liu Jiahui [1 ]
Niu Yunyun [1 ]
机构
[1] China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
iEEG; Neural network (NN); Entropy; Feature extraction; Mutual range of coefficient; Hidden layer node; APPROXIMATE ENTROPY; EEG SIGNALS; ENERGY; ALGORITHM; APEN;
D O I
10.1049/cje.2021.03.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic identification of intracranial electroencephalogram (iEEG) signals has become more and more important in the field of medical diagnostics. In this paper, an optimized neural network classifier is proposed based on an improved feature extraction method for the identification of iEEG epileptic seizures. Four kinds of entropy, Sample entropy, Approximate entropy, Shannon entropy, Log energy entropy are extracted from the database as the feature vectors of Neural network (NN) during the identification process. Four kinds of classification tasks, namely Pre-ictal v Post-ictal (CD), Pre-ictal v Epileptic (CE), Post-ictal v Epileptic (DE), Pre-ictal v Post-ictal v Epileptic (CDE), are used to test the effect of our classification method. The experimental results show that our algorithm achieves higher performance in all tasks than previous algorithms. The effect of hidden layer nodes number is investigated by a constructive approach named growth method. We obtain the optimized number ranges of hidden layer nodes for the binary classification problems CD, CE, DE, and the multitask classification problem CDE, respectively.
引用
收藏
页码:419 / 425
页数:7
相关论文
共 50 条
  • [31] Detection of Epileptic Seizures Using Phase–Amplitude Coupling in Intracranial Electroencephalography
    Kohtaroh Edakawa
    Takufumi Yanagisawa
    Haruhiko Kishima
    Ryohei Fukuma
    Satoru Oshino
    Hui Ming Khoo
    Maki Kobayashi
    Masataka Tanaka
    Toshiki Yoshimine
    Scientific Reports, 6
  • [32] Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier
    S. Raghu
    N. Sriraam
    G. Pradeep Kumar
    Cognitive Neurodynamics, 2017, 11 : 51 - 66
  • [33] Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier
    Raghu, S.
    Sriraam, N.
    Kumar, G. Pradeep
    COGNITIVE NEURODYNAMICS, 2017, 11 (01) : 51 - 66
  • [34] Multichannel EEG based inter-ictal seizures detection using Teager energy with backpropagation neural network classifier
    N. Sriraam
    Kadeeja Tamanna
    Leena Narayan
    Mehraj Khanum
    S. Raghu
    A. S. Hegde
    Anjani Bhushan Kumar
    Australasian Physical & Engineering Sciences in Medicine, 2018, 41 : 1047 - 1055
  • [35] Multichannel EEG based inter-ictal seizures detection using Teager energy with backpropagation neural network classifier
    Sriraam, N.
    Tamanna, Kadeeja
    Narayan, Leena
    Khanum, Mehraj
    Raghu, S.
    Hegde, A. S.
    Kumar, Anjani Bhushan
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2018, 41 (04) : 1047 - 1055
  • [36] Automated epileptic seizures detection using multi-features and multilayer perceptron neural network
    Sriraam N.
    Raghu S.
    Tamanna K.
    Narayan L.
    Khanum M.
    Hegde A.S.
    Kumar A.B.
    Brain Informatics, 2018, 5 (02)
  • [37] An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy
    Chen, Wenna
    Wang, Yixing
    Ren, Yuhao
    Jiang, Hongwei
    Du, Ganqin
    Zhang, Jincan
    Li, Jinghua
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [38] An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy
    Wenna Chen
    Yixing Wang
    Yuhao Ren
    Hongwei Jiang
    Ganqin Du
    Jincan Zhang
    Jinghua Li
    BMC Medical Informatics and Decision Making, 23
  • [39] Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    Petrosian, A
    Prokhorov, D
    Homan, R
    Dasheiff, R
    Wunsch, D
    NEUROCOMPUTING, 2000, 30 (1-4) : 201 - 218