Equity premium prediction and structural breaks

被引:1
|
作者
Smith, Simon C. [1 ]
机构
[1] USC, Dept Econ, USC Dornsife INET, Los Angeles, CA 90007 USA
关键词
Bayesian analysis; equity premium; forecasting; structural breaks; MULTIPLE CHANGE-POINT; STOCK RETURNS; PARAMETER INSTABILITY; OPTIMAL TESTS; MODELS; PREDICTABILITY; FORECASTS; SAMPLE;
D O I
10.1002/ijfe.1759
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
A Bayesian autoregressive model that allows for multiple structural breaks outperforms the historical average, which has proven so successful, in a statistically and economically significant way for mean-variance investors when forecasting the equity premium. A range of autoregressive models that do not allow for breaks or do so in an ad hoc way fail to outperform the historical average. The Bayesian model estimates three breaks that occur in 1929, 1940, and 1971 corresponding to major events that drive the shifts in the underlying distribution of the premium. Allowing for breaks over the forecast horizon further improves the forecasting power.
引用
收藏
页码:412 / 429
页数:18
相关论文
共 50 条
  • [31] Out-of-sample equity premium prediction: A scenario analysis approach
    Tang, Xiaoxiao
    Hu, Feifang
    Wang, Peiming
    JOURNAL OF FORECASTING, 2018, 37 (05) : 604 - 626
  • [32] The Danish equity premium
    Engsted, T
    Tanggaard, C
    NATIONALOKONOMISK TIDSSKRIFT, 1999, 137 (02): : 164 - 177
  • [33] The equity premium in China
    Huang, Ping
    Zhou, Zhong-Qiang
    Zhang, Wei
    APPLIED ECONOMICS LETTERS, 2020, 27 (13) : 1112 - 1118
  • [34] Volatility combination prediction in the presence of structural breaks
    Princ, Peter
    MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 749 - 754
  • [35] An Evaluation of Equity Premium Prediction Using Multiple Kernel Learning with Financial Features
    Argimiro Arratia
    Lluís A. Belanche
    Luis Fábregues
    Neural Processing Letters, 2020, 52 : 117 - 134
  • [36] An Evaluation of Equity Premium Prediction Using Multiple Kernel Learning with Financial Features
    Arratia, Argimiro
    Belanche, Lluis A.
    Fabregues, Luis
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 117 - 134
  • [37] Data snooping in equity premium prediction (vol 37, pg 72, 2021)
    Dichtl, Hubert
    Drobetz, Wolfgang
    Neuhierl, Andreas
    Wendt, Viktoria-Sophie
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (03) : 1326 - 1326
  • [38] Volatility spillover among sector equity returns under structural breaks
    Farooq Malik
    Review of Quantitative Finance and Accounting, 2022, 58 : 1063 - 1080
  • [39] Volatility spillover among sector equity returns under structural breaks
    Malik, Farooq
    REVIEW OF QUANTITATIVE FINANCE AND ACCOUNTING, 2022, 58 (03) : 1063 - 1080
  • [40] THE EQUITY RISK PREMIUM - A SOLUTION
    RIETZ, TA
    JOURNAL OF MONETARY ECONOMICS, 1988, 22 (01) : 117 - 131