Classification of concept drift data streams

被引:0
|
作者
Padmalatha, E. [1 ]
Reddy, C. R. K. [2 ]
Rani, B. Padmaja [3 ]
机构
[1] JNTUH, Hyderabad, Andhra Pradesh, India
[2] CBIT, CSE Dept, Hyderabad, Andhra Pradesh, India
[3] JNTUH, CSE Dept, Hyderabad, Andhra Pradesh, India
关键词
data stream; ensemble; class label; concept drift;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Concept drift has been a very important concept in the realm of data streams. Streaming data may consist of multiple drifting concepts each having its own underlying data distribution. Concept drift occurs when a set of examples has legitimate class labels at one time and has different legitimate labels at another time. This paper provides a comprehensive overview of existing concept -evolution in concept drifting techniques along different dimensions and it provides lucid vision about the ensemble's behavior when dealing with concept drifts.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Discussion and review on evolving data streams and concept drift adapting
    Imen Khamassi
    Moamar Sayed-Mouchaweh
    Moez Hammami
    Khaled Ghédira
    Evolving Systems, 2018, 9 : 1 - 23
  • [42] Learning Decision Trees from Data Streams with Concept Drift
    Jankowski, Dariusz
    Jackowski, Konrad
    Cyganek, Boguslaw
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1682 - 1691
  • [43] DragStream: An Anomaly And Concept Drift Detector In Univariate Data Streams
    Bibinbe, Anne Marthe Sophie Ngo
    Mahamadou, Abdoul J.
    Mbouopda, Michael Franklin
    Nguifo, Engelbert Mephu
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 842 - 851
  • [44] Learning Parameter Distributions to Detect Concept Drift in Data Streams
    Haug, Johannes
    Kasneci, Gjergji
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9452 - 9459
  • [45] Concept drift robust adaptive novelty detection for data streams
    Cejnek, Matous
    Bukovsky, Ivo
    NEUROCOMPUTING, 2018, 309 : 46 - 53
  • [46] A Stable and Online Approach to Detect Concept Drift in Data Streams
    da Costa, Fausto Guzzo
    de Mello, Rodrigo Fernandes
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 330 - 335
  • [47] BASWE: Balanced Accuracy-Based Sliding Window Ensemble for Classification in Imbalanced Data Streams with Concept Drift
    de Oliveira, Douglas Amorim
    Delgado, Karina Valdivia
    Lauretto, Marcelo de Souza
    INTELLIGENT SYSTEMS, BRACIS 2024, PT I, 2025, 15412 : 231 - 246
  • [48] Structural XML Classification in Concept Drifting Data Streams
    Brzezinski, Dariusz
    Piernik, Maciej
    NEW GENERATION COMPUTING, 2015, 33 (04) : 345 - 366
  • [49] Structural XML Classification in Concept Drifting Data Streams
    Dariusz Brzezinski
    Maciej Piernik
    New Generation Computing, 2015, 33 : 345 - 366
  • [50] GP Boosting Classification on Concept Drifting Data Streams
    Kumar, Dirisala J. Nagendra
    Murthy, J. V. R.
    Satapathy, Suresh Chandra
    Pullela, S. V. V. S. R. Kumar
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 265 - +