Vector variational control problems with KT-invex

被引:0
|
作者
Xu, Shuli [1 ]
Jiang, Jun [1 ]
Ouyang, Weiwei [2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Coll Math & Stat, Wuhan 430072, Peoples R China
关键词
vector variational control problems; invexity; Kuhn-Tucker point; DUALITY; SUFFICIENCY;
D O I
10.1109/AICI.2009.273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a generalization of convexity is considered in the case of vector variational control problems, we obtain several scalarization theorems for KT-invex variational control problems, and we generalize optimality results of known KT-invex control problems.
引用
收藏
页码:223 / +
页数:2
相关论文
共 50 条
  • [31] Vector variational inequalities for nondifferentiable convex vector optimization problems
    Lee, GM
    Lee, KB
    JOURNAL OF GLOBAL OPTIMIZATION, 2005, 32 (04) : 597 - 612
  • [32] Vector variational inequalities and vector optimization problems on Hadamard manifolds
    Chen, Sheng-lan
    Huang, Nan-jing
    OPTIMIZATION LETTERS, 2016, 10 (04) : 753 - 767
  • [33] Vector variational inequality as a tool for studying vector optimization problems
    Pukyong Natl Univ, Pusan, Korea, Republic of
    Nonlinear Anal Theory Methods Appl, 5 (745-765):
  • [34] On Relations Between Vector Optimization Problems and Vector Variational Inequalities
    D.E. Ward
    G.M. Lee
    Journal of Optimization Theory and Applications, 2002, 113 : 583 - 596
  • [35] Nonsmooth Vector Optimization Problems and Minty Vector Variational Inequalities
    Q. H. Ansari
    G. M. Lee
    Journal of Optimization Theory and Applications, 2010, 145 : 1 - 16
  • [36] On parametric implicit vector variational inequality problems
    Farajzadeh, A.
    Plubteing, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [37] Duality and Weak Efficiency in Vector Variational Problems
    M. Arana Jiménez
    F. Ortegón Gallego
    Journal of Optimization Theory and Applications, 2013, 159 : 547 - 553
  • [38] EKELAND VARIATIONAL PRINCIPLES IN VECTOR EQUILIBRIUM PROBLEMS
    Gutierrez, C.
    Kassay, G.
    Novo, V.
    Rodenas-Pedregosa, J. L.
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (04) : 2405 - 2425
  • [39] Existence and duality of implicit vector variational problems
    Ansari, QH
    Yang, XQ
    Yao, JC
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (7-8) : 815 - 829
  • [40] On some vector variational inequalities and optimization problems
    Treanta, Savin
    AIMS MATHEMATICS, 2022, 7 (08): : 14434 - 14443