Vector variational control problems with KT-invex

被引:0
|
作者
Xu, Shuli [1 ]
Jiang, Jun [1 ]
Ouyang, Weiwei [2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Coll Math & Stat, Wuhan 430072, Peoples R China
关键词
vector variational control problems; invexity; Kuhn-Tucker point; DUALITY; SUFFICIENCY;
D O I
10.1109/AICI.2009.273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a generalization of convexity is considered in the case of vector variational control problems, we obtain several scalarization theorems for KT-invex variational control problems, and we generalize optimality results of known KT-invex control problems.
引用
收藏
页码:223 / +
页数:2
相关论文
共 50 条
  • [1] KT-invex control problem
    Arana-Jimenez, M.
    Osuna-Gomez, R.
    Rufian-Lizana, A.
    Ruiz-Garzon, G.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 489 - 496
  • [2] A necessary and sufficient condition for duality in control problems: KT-invex functionals
    Arana-Jimenez, M.
    Ruiz-Garzon, G.
    Beato-Moreno, A.
    Zafra-Garrido, M. J.
    OPTIMIZATION, 2012, 61 (01) : 89 - 97
  • [3] Symmetric duality for invex multiobjective fractional variational problems
    Kim, DS
    Lee, WJ
    Schaible, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) : 505 - 521
  • [4] On a New Class of Vector Variational Control Problems
    Treanta, Savin
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (14) : 1594 - 1603
  • [5] Penalty approach for KT-pseudoinvex multidimensional variational control problems
    Preeti
    Agarwal, Poonam
    Treanta, Savin
    Nonlaopon, Kamsing
    AIMS MATHEMATICS, 2023, 8 (03): : 5687 - 5702
  • [6] A class of generalized invex functions and vector variational-like inequalities
    Ru Li
    Guolin Yu
    Journal of Inequalities and Applications, 2017
  • [7] A class of generalized invex functions and vector variational-like inequalities
    Li, Ru
    Yu, Guolin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [8] On a minimal criterion of efficiency in vector variational control problems
    Treanta, Savin
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (04): : 804 - 812
  • [9] On non-smooth α-invex functions and vector variational-like inequality
    Mishra, S. K.
    Wang, S. Y.
    Lai, K. K.
    OPTIMIZATION LETTERS, 2008, 2 (01) : 91 - 98
  • [10] On non-smooth α-invex functions and vector variational-like inequality
    S. K. Mishra
    S. Y. Wang
    K. K. Lai
    Optimization Letters, 2008, 2 : 91 - 98