Machine Learning-Based Analysis of Cryptocurrency Market Financial Risk Management

被引:16
|
作者
Shahbazi, Zeinab [1 ]
Byun, Yung-Cheol [1 ]
机构
[1] Jeju Natl Univ, Inst Informat Sci & Technol, Major Elect Engn, Dept Comp Engn, Jeju 63243, South Korea
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Cryptocurrency; Portfolios; Risk management; Machine learning; Ciphers; Tail; Regulation; cryptocurrency; inherent risk; ineffective exchange control; PREDICTION;
D O I
10.1109/ACCESS.2022.3162858
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cryptocurrency is one of the famous financial state in all over the world which cause several type of risks that effect on the intrinsic assessment of risk auditors. From the beginning the growth of cryptocurrency gives the financial business with the wide risk in term of presentation of money laundering. In the institution of financial supports such as anti-money laundering, banks and secrecy of banks proceed as a specialist of risk, manager of bank and officer of compliance which has a provocation for the related transaction through cryptocurrency and the users who hide the illegal funds.In this study, the Hierarchical Risk Parity and unsupervised machine learning applied on the cryptocurrency framework. The process of professional accounting in term of inherent risk connected with cryptocurrency regarding the occurrence likelihood and statement of financial impact. Determining cryptocurrency risks comprehended to have a high rate of occurrence likelihood and the access of private key which is unauthorized. The professional cryptocurrency experience in transaction cause the lower risk comparing the less experienced one. The Hierarchical Risk Parity gives the better output in term of returning the adjusted risk tail to get the better risk management result.The result section shows the proposed model is robust to various intervals which are re-balanced and the co-variance window estimation.
引用
收藏
页码:37848 / 37856
页数:9
相关论文
共 50 条
  • [41] Analysis of the financial derivatives for risk management in the context of financial market instability
    Tkachuk, Hanna
    Burachek, Igor
    Vyhovskyi, Volodymyr
    Sotnyk, Anhelina
    Tsaruk, Iryna
    SCIENTIFIC BULLETIN OF MUKACHEVO STATE UNIVERSITY-SERIES ECONOMICS, 2024, 11 (04): : 81 - 92
  • [42] Machine learning-based diagnosis and risk factor analysis of cardiocerebrovascular disease based on KNHANES
    Taeseob Oh
    Dongkyun Kim
    Siryeol Lee
    Changwon Won
    Sunyoung Kim
    Ji-soo Yang
    Junghwa Yu
    Byungsung Kim
    Joohyun Lee
    Scientific Reports, 12
  • [43] Machine learning-based early detection of diabetes risk factors for improved health management
    Nuthakki P.
    Kumar T.P.
    Multimedia Tools and Applications, 2024, 83 (42) : 89665 - 89680
  • [44] An Efficacy Evaluation on Prediabetes Management Using a Machine Learning-Based Risk Stratification Approach
    Zou, Xiantong
    Zhu, Zhanxing
    Luo, Yingying
    Li, Yufeng
    Zhou, Xianghai
    Ji, Linong
    DIABETES, 2019, 68
  • [45] Landslide risk assessment and management using hybrid machine learning-based empirical models
    Yang, Dingying
    Jiang, Xi
    Arabameri, Alireza
    Santosh, M.
    Egbueri, Johnbosco C.
    GEOLOGICAL JOURNAL, 2024, 59 (03) : 885 - 905
  • [46] Experimentation Scenarios for Machine Learning-Based Resource Management
    Kostopoulos, Alexandros
    Chochliouros, Ioannis P.
    Vardakas, John
    Payaro, Miquel
    Barrachina, Sergio
    Rahman, Md Arifur
    Vinogradov, Evgenii
    Chanclou, Philippe
    Gonzalez, Roberto
    Klitis, Charalambos
    di Vimercati, Sabrina De Capitani
    Soumplis, Polyzois
    Varvarigos, Emmanuel
    Kritharidis, Dimitrios
    Chartsias, Kostas
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2022, 652 : 120 - 133
  • [47] Continuous Management of Machine Learning-Based Application Behavior
    Anisetti, Marco
    Ardagna, Claudio A.
    Bena, Nicola
    Damiani, Ernesto
    Panero, Paolo G.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2025, 18 (01) : 112 - 125
  • [48] An Analysis of Machine Learning-Based Semantic Matchmaking
    Karabulut, Erkan
    Sofia, Rute C. C.
    IEEE ACCESS, 2023, 11 : 27829 - 27842
  • [49] Machine learning-based analysis of historical towers
    Dabiri, Hamed
    Clementi, Jessica
    Marini, Roberta
    Mugnozza, Gabriele Scarascia
    Bozzano, Francesca
    Mazzanti, Paolo
    ENGINEERING STRUCTURES, 2024, 304
  • [50] Analysis of Internet Financial Risk Control Model Based on Machine Learning Algorithms
    Liu, Mingjin
    Gao, Ruijie
    Fu, Wei
    JOURNAL OF MATHEMATICS, 2021, 2021