On a type of mixed norm spaces

被引:1
|
作者
Csorgo, I [1 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, H-1088 Budapest, Hungary
关键词
D O I
10.1023/A:1006522604337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the mixed norm spaces L((B,p,q)) and their duals are investigated. In the case p, 2 < infinity it is proved that the dual of L((B,p,q)) is L((B,p',q')), where p(-1) + p'(-1) = 1 and q(-1) + q'(-1) = 1. For p = 2 and p = infinity an isometric iso- morphism is discussed between the mixed norm space L((B,2,infinity)) and L(infinity)(B,l(2)), the L(infinity)-space of l(2)-valued functions. Here a measurability theorem is proved for l(2)-valued functions. The dual of an important subspace of L((B,2,infinity)) is characterized as a space of vector measures. Finally, as an application we show that if B is finitely generated then the dual of L((B,2,infinity)) is L((B,2,1)).
引用
收藏
页码:79 / 91
页数:13
相关论文
共 50 条
  • [31] DUALITY AND MULTIPLIERS FOR MIXED NORM SPACES
    AHERN, P
    JEVTIC, M
    MICHIGAN MATHEMATICAL JOURNAL, 1983, 30 (01) : 53 - 64
  • [32] Mixed Norm Inequalities for Lebesgue Spaces
    Jain, Pankaj
    Kumari, Santosh
    Singh, Monika
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (05) : 783 - 787
  • [33] CESARO EXPONENTS OF MIXED NORM SPACES
    Chen, Bonan
    Cheng, Guozheng
    Fang, Xiang
    Liu, Chao
    Yu, Tao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (09) : 3935 - 3948
  • [34] The Mixed Norm Spaces of Polyharmonic Functions
    Zhangjian Hu
    Miroslav Pavlović
    Xuejun Zhang
    Potential Analysis, 2007, 27 : 167 - 182
  • [35] Coefficient multipliers on mixed norm spaces
    Xiukui Y.
    Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (3) : 252 - 256
  • [36] Mixed Norm Inequalities for Lebesgue Spaces
    Pankaj Jain
    Santosh Kumari
    Monika Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 783 - 787
  • [37] The mixed norm spaces of polyharmonic functions
    Hu, Zhangjian
    Pavlovic, Miroslav
    Zhang, Xuejun
    POTENTIAL ANALYSIS, 2007, 27 (02) : 167 - 182
  • [38] The diagonal mapping in mixed norm spaces
    Ren, GB
    Shi, JH
    STUDIA MATHEMATICA, 2004, 163 (02) : 103 - 117
  • [39] IMBEDDING THEOREMS FOR SPACES WITH A MIXED NORM
    GUDIEV, AK
    DOKLADY AKADEMII NAUK SSSR, 1966, 166 (03): : 522 - &
  • [40] COEFFICIENT MULTIPLIERS OF MIXED NORM SPACES
    JEVTIC, M
    JOVANOVIC, I
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (03): : 283 - 285